Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (01): 55-62.doi: 10.12052/gdutxb.220039
• Computer Science and Technology • Previous Articles Next Articles
Yang Zhen-xiong, Tan Tai-zhe
CLC Number:
[1] ZHOU Z, FENG Z, LIU J, et al. Single-image low-light enhancement via generating and fusing multiple sources [J]. Neural Computing and Applications, 2020, 32: 6455-6465. [2] GHARBI M, CHEN J, BARRON J T, et al. Deep bilateral learning for real-time image enhancement [J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 118. [3] GUO X, LI Y, LING H. LIME: Low-light image enhancement via illumination map estimation [J]. IEEE Transactions on Image Processing, 2016, 26(2): 982-993. [4] LORE K G, AKINTAYO A, SARKAR S. LLNet: a deep autoencoder approach to natural low-light image enhancement [J]. Pattern Recognition, 2017, 61: 650-662. [5] SHEN L , YUE Z , FENG F , et al. MSR-net: low-light image enhancement using deep convolutional network[EB/OL]. arXiv: 1711.02488 (2017-11-07) [2022-03-25]. https://doi.org/10.48550/arXiv.1711.02488. [6] WEI C , WANG W , YANG W, et al. Deep retinex decomposition for low-light enhancement[EB/OL]. arXiv: 1808.04560 (2018-08-14) [2022-03-25]. https://doi.org/10.48550/arXiv.1808.04560. [7] CHEN C , CHEN Q , XU J , et al. Learning to see in the dark[EB/OL]. arXiv: 1805.01934 (2018-05-04) [2022-03-25]. https://doi.org/10.48550/arXiv.1805.01934. [8] KALANTARI N K, RAMAMOORTHI R. Deep high dynamic range imaging of dynamic scenes[J]. ACM Transactions on Graphics, 2017, 36(4): 1-12. [9] WU X , SHAO J , GAO L , et al. Unpaired image-to-image translation from shared deep space[C]//2018 25th IEEE International Conference on Image Processing (ICIP) . Athens: IEEE, 2018: 2127-2131. [10] LIU M Y , BREUEL T , KAUTZ J . Unsupervised image-to-image translation networks[EB/OL]. arXiv: 1703.00848 (2018-07-23) [2022-03-25]. https://doi.org/10.48550/arXiv.1703.00848. [11] MADAM N T, KUMAR S, RAJAGOPALAN A N. Unsupervised class-specific deblurring[C]//Computer Vision–ECCV 2018: 15th European Conference. Munich: Springer International Publishing, 2018: 358-374. [12] HUANG X, LIU M Y, BELONGIE S, et al. Multimodal unsupervised image-to-image translation[EB/OL]. arXiv: 1804.04732 (2018-08-14) [2022-03-25]. https://doi.org/10.48550/arXiv.1804.04732. [13] CHOI Y, CHOI M, KIM M, et al. Stargan: unified generative adversarial networks for multi-domain image-to-image translation[EB/OL]. arXiv: 1711.09020 (2018-09-21) [2022-03-25]: https://doi.org/10.48550/arXiv.1711.09020. [14] HOFFMAN J, TZENG E, PARK T, et al. CyCADA: cycle-consistent adversarial domain adaptation[EB/OL].arXiv: 1711.03213 (2017-12-29) [2022-03-25]. https://doi.org/10.48550/arXiv.1711.03213. [15] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[EB/OL].arXiv: 1703.10593 (2020-08-24) [2022-03-25]. https://doi.org/10.48550/arXiv.1703.10593. [16] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [J]. Communications of the ACM, 2020, 63(11): 139-144. [17] GAWADE A, PANDHARKAR R, DEOLEKAR S. Gantoon: creative cartoons using generative adversarial network[C]//Information, Communication and Computing Technology: 5th International Conference, ICICCT 2020. Singapore: Springer, 2020: 222-230. [18] HU D. An introductory survey on attention mechanisms in NLP problems[EB/OL]. arXiv: 1811.05544 (2018-11-12) [2022-03-25]. https://doi.org/10.48550/arXiv.1811.05544. [19] WANG F, TAX D M J. Survey on the attention based RNN model and its applications in computer vision[EB/OL]. arXiv: 1601.06823 (2016-01-25) [2022-03-25]. https://doi.org/10.48550/arXiv.1601.06823. [20] JIANG X, ZHANG L, XU M, et al. Attention scaling for crowd counting[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA: IEEE. 2020: 4706-4715. [21] HAN Y S, YOO J, YE J C. Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis[EB/OL]. arXiv: 1611.06391 (2016-11-25) [2022-03-25]. https://doi.org/10.48550/arXiv.1611.06391. [22] SHIBATA N, TANITO M, MITSUHASHI K, et al. Development of a deep residual learning algorithm to screen for glaucoma from fundus photography [J]. Scientific Reports, 2018, 8(1): 14665. [23] KUANG D Y. On reducing negative jacobian determinant of the deformation predicted by deep registration networks[EB/OL]. arXiv: 1907.00068 (2019-06-28) [2022-03-25]. https://doi.org/10.48550/arXiv.1907.00068. [24] XIONG W, LIU D, SHEN X, et al. Unsupervised real-world low-light image enhancement with decoupled networks. [EB/OL]. arXiv: 2005.02818 (2020-05-06) [2022-03-25]. https://doi.org/10.48550/arXiv.2005.02818. [25] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[EB/OL]. arXiv: 1505.04597 (2015-05-18) [2022-03-25]. https://doi.org/10.48550/arXiv.1505.04597 [26] JIANG Y, GONG X, LIU D, et al. Enlightengan: deep light enhancement without paired supervision [J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349. [27] IIZUKA S, SIMO-SERRA E, ISHIKAWA H. Globally and locally consistent image completion [J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 107. [28] MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks[EB/OL]. arXiv: 1611.04076 (2017-04-05) [2022-03-25]. https://doi.org/10.48550/arXiv.1611.04076. [29] HUYNH-THU Q, GHANBARI M. Scope of validity of PSNR in image/video quality assessment [J]. Electronics letters, 2008, 44(13): 800-801. |
[1] | Kuang Yong-nian, Wang Feng. Video Frame Anomaly Behavior Detection Based on Foreground Area Generative Adversarial Networks [J]. Journal of Guangdong University of Technology, 2024, 41(01): 63-68,92. |
[2] | Wu Ya-di, Chen Ping-hua. A Music Recommendation Model Based on Users' Long and Short Term Preferences and Music Emotional Attention [J]. Journal of Guangdong University of Technology, 2023, 40(04): 37-44. |
[3] | Ye Wu-jian, Gao Hai-jian, Weng Shao-wei, Gao Zhi, Wang Shan-jin, Zhang Chun-yu, Liu Yi-jun. A Two-stage Effect Rendering Method for Art Font Based on CGAN Network [J]. Journal of Guangdong University of Technology, 2019, 36(03): 47-55. |
|