Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (02): 116-121.doi: 10.12052/gdutxb.220181
• Comprehensive Studies • Previous Articles
Hong Ze-bin, Wang Feng
CLC Number:
[1] MAO Y Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing: the communication perspective [J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322-2358. [2] CHEN M Z, CHALLITA U, SAAD W, et al. Artificial neural networks-based machine learning for wireless networks: a tutorial [J]. IEEE Communications Surveys & Tutorials, 2019, 21(4): 3039-3071. [3] 陈力, 卫国. 未来无线网络下的空中计算技术[J]. 中兴通讯技术, 2019, 25(1): 29-34. CHEN L, WEI G. Over-the-air computation for future networks [J]. ZTE Technology Journal, 2019, 25(1): 29-34. [4] 王丰, 李宇龙, 林志飞, 等. 基于计算吞吐量最大化的能量采集边缘计算系统在线资源优化配置[J]. 广东工业大学学报, 2022, 39(4): 17-23. WANG F, LI Y L, LIN Z F, et al. An online resource allocation design for computation capacity maximization in energy harvesting mobile edge computing systems [J]. Journal of Guangdong University of Technology, 2022, 39(4): 17-23. [5] ZHOU Z, CHEN X, LI E, et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing [J]. Proceedings of the IEEE, 2019, 107(8): 1738-1762. [6] WANG F, XU J, DING Z G. Multi-antenna NOMA for computation offloading in multiuser mobile edge computing systems [J]. IEEE Transactions on Communications, 2018, 67(3): 2450-2463. [7] GOLDENBAUM M, BOCHE H, STANCZAK S. Harnessing interference for analog function computation in wireless sensor networks [J]. IEEE Transactions on Signal Processing, 2013, 61(20): 4893-4906. [8] SHI G X, GUO S S, YE J, et al. Multiple parallel federated learning via over-the-air computation [J]. IEEE Open Journal of the Communications Society, 2022, 3: 1252-1264. [9] WANG S, HONG Y C, WANG R, et al. Edge federated learning via unit-modulus over-the-air computation [J]. IEEE Transactions on Communications, 2022, 70(5): 3141-3156. [10] NAZER B, GASTPAR M. Computation over multiple-access channels [J]. IEEE Transactions on Information Theory, 2007, 53(10): 3498-3516. [11] GOLDENBAUM M, STANCZAK S. Robust analog function computation via wireless multiple-access channels [J]. IEEE Transactions on Communications, 2013, 61(9): 3863-3877. [12] GOLDENBAUM M, BOCHE H, STANCZAK S. Nomographic functions: efficient computation in clustered gaussian sensor networks [J]. IEEE Transactions on Wireless Communications, 2014, 14(4): 2093-2105. [13] CHEN L, ZHAO N, CHEN Y F, et al. Over-the-air computation for IoT networks: computing multiple functions with antenna arrays [J]. IEEE Internet of Things Journal, 2018, 5(6): 5296-5306. [14] WANG F, XU J, LAU V K N, et al. Amplify-and-forward relaying for hierarchical over-the-air computation [J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 10529-10543. [15] WANG F, LAU V K N. Multi-level over-the-air aggregation of mobile edge computing over D2D wireless networks [J]. IEEE Transactions on Wireless Communications, 2022, 21(10): 8337-8353. [16] LIU W C, ZANG X, LI Y H, et al. Over-the-air computation systems: optimization, analysis and scaling laws [J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5488-5502. [17] ZHU G X, HUANG K B. MIMO over-the-air computation for high-mobility multimodal sensing [J]. IEEE Internet of Things Journal, 2019, 6(4): 6089-6103. [18] HU L, WANG Z B, ZHU H B, et al. RIS-assisted over-the-air federated learning in millimeter wave MIMO networks [J]. Journal of Communications and Information Networks, 2022, 7(2): 145-156. [19] CAO X W, ZHU G X, XU J, et al. Optimized power control for over-the-air computation in fading channels [J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7498-7513. [20] BASARAN S T, KURT G K, CHATZIMISIOS P. Energy-efficient over-the-air computation scheme for densely deployed IoT networks [J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3558-3565. [21] VISSER H J, VULLERS R J M. RF energy harvesting and transport for wireless sensor network applications: principles and requirements [J]. Proceedings of the IEEE, 2013, 101(6): 1410-1423. [22] WANG F, XU J, CUI S G. Optimal energy allocation and task offloading policy for wireless powered mobile edge computing systems [J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2443-2459. [23] LI X Y, ZHU G X, GONG Y, et al. Wirelessly powered data aggregation for IoT via over-the-air function computation: beamforming and power control [J]. IEEE Transactions on Wireless Communications, 2019, 18(7): 3437-3452. [24] WANG Z B, SHI Y M, ZHOU Y, et al. Wireless-powered over-the-air computation in intelligent reflecting surface-aided IoT networks [J]. IEEE Internet of Things Journal, 2021, 8(3): 1585-1598. [25] FARAJZADEH A, ERCETIN O, YANIKOMEROGLU H. Mobility-assisted over-the-air computation for backscatter sensor networks [J]. IEEE Wireless Communications Letters, 2020, 9(5): 675-678. [26] BOYD S, VANDENBERGHE L. Convex optimization[M]. UK: Cambridge University Press, 2004. |
[1] | Wang Feng, Li Yu-long, Lin Zhi-fei, Cui Miao, Zhang Guang-chi. An Online Resource Allocation Design for Computation Capacity Maximization in Energy Harvesting Mobile Edge Computing Systems [J]. Journal of Guangdong University of Technology, 2022, 39(04): 17-23. |
[2] | Tong Hui-zhi, Zhang Guang-chi, Zhou Xun-long, Cui Miao, Liu Yi-jun, Lin Fan. Joint Energy and Spectrum Allocation in Multiple Adjacent Cells with Energy Harvesting Base Stations [J]. Journal of Guangdong University of Technology, 2018, 35(04): 68-74. |
[3] | Jiang Yue, Liu Hai-lin, Wang Qiang. Energy Cooperation Strategy for Wireless Communication Networks Based on Base Station Sleep Technology [J]. Journal of Guangdong University of Technology, 2018, 35(02): 69-74. |
|