Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (05): 22-29.doi: 10.12052/gdutxb.240074
• Electrical Engineering • Previous Articles Next Articles
Luo Jian-qiang1, Li Hao-xian2, Yang Ling1
CLC Number:
[1] 谢小荣, 贺静波, 毛航银, 等. “双高”电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-474. XIE X R, HE J B, MAO H Y, et al. New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2): 461-474. [2] 高本锋, 刘晋, 李忍, 等. 风电机组的次同步控制相互作用研究综述[J]. 电工技术学报, 2015, 30(16): 154-161. GAO B F, LIU J, LI R, et al. Studies of sub-synchronous control interaction in wind turbine generators[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 154-161. [3] 王伟胜, 张冲, 何国庆, 等. 大规模风电场并网系统次同步振荡研究综述[J]. 电网技术, 2017, 41(4): 1050-1060. WANG W S, ZHANG C, HE G Q, et al. Overview of research on subsynchronous oscillations in large-scale wind farm integrated system[J]. Power System Technology, 2017, 41(4): 1050-1060. [4] 陈晨, 杜文娟, 王海风. 风电场接入引发电力系统次同步振荡机理综述[J]. 南方电网技术, 2018, 12(1): 84-93. CHEN C, DU W J, WANG H F. Review on mechanism of sub-synchronous oscillations caused by grid-connected wind farms in power systems[J]. Southern Power System Technology, 2018, 12(1): 84-93. [5] VARMA R K, MOHARANA A. SSR in Double-cage induction generator-based wind farm connected to series-compensated transmission line[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2573-2583. [6] 王亮, 谢小荣, 姜齐荣, 等. 大规模双馈风电场次同步谐振的分析与抑制[J]. 电力系统自动化, 2014, 38(22): 26-31. WANG L, XIE X R, JIANG Q R, et al. Analysis and mitigation of SSR problems in large-scale wind farms with doubly-fed wind turbines[J]. Automation of Electric Power Systems, 2014, 38(22): 26-31. [7] 吕敬, 蔡旭, 张占奎, 等. 海上风电场经MMC-HVDC并网的阻抗建模及稳定性分析[J]. 中国电机工程学报, 2016, 36(14): 3771-3780. LYU J, CAI X, ZHANG Z K, et al. Impedance modeling and stability analysis of MMC-based HVDC for offshore wind farms[J]. Proceedings of the CSEE, 2016, 36(14): 3771-3780. [8] 栗然, 卢云, 刘会兰, 等. 双馈风电场经串补并网引起次同步振荡机理分析[J]. 电网技术, 2013, 37(11): 3073-3079. LI R, LU Y, LIU H L, et al. Mechanism analysis on subsynchronous oscillation caused by grid-integration of doubly fed wind power generation system via series compensation[J]. Power System Technology, 2013, 37(11): 3073-3079. [9] WANG L, XIE X, JIANG Q, et al. Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system[J]. IEEE Transactions on Power Systems, 2015, 30(5): 2772-2779. [10] 胡应宏, 邓春, 谢小荣, 等. 双馈风机–串补输电系统次同步谐振的附加阻尼控制[J]. 电网技术, 2016, 40(4): 1169-1173. HU Y H, DENG C, XIE X R, et al. Additional damping control of DFIG series compensated transmission system under sub-synchronous resonance[J]. Power System Technology, 2016, 40(4): 1169-1173. [11] OSTADI A, YAZDANI A, VARMA R K. Modeling and stability analysis of a DFIG-based wind-power generator interfaced with a series-compensated line[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1504-1514. [12] IRWIN G D, JINDAL A K, ISAACS A L. Sub-synchronous control interactions between type 3 wind turbines and series compensated AC transmission systems[C]//2011 IEEE Power and Energy Society General Meeting. Detroit, MI: IEEE, 2011: 1-6. [13] DU W, CHEN C, WANG H. Subsynchronous interactions induced by DFIGs in power systems without series compensated lines[J]. IEEE Transactions on Sustainable Energy, 2018, 9(3): 1275-1284. [14] DU W, FU Q, WANG H, et al. Concept of modal repulsion for examining the subsynchronous oscillations caused by wind farms in power systems[J]. IEEE Transactions on Power Systems, 2019, 34(1): 518-526. [15] 熊浩清, 何鹏飞, 孙冉, 等. 双馈风电场无串补并网振荡场景及关键影响因素研究[J]. 高电压技术, 2024, 50(2): 660-672. XIONG H Q, HE P F, SUN R, et al. Oscillation scenarios of grid integrated wind farm with DFIGs without series compensation and effects of key factors[J]. High Voltage Engineering, 2024, 50(2): 660-672. [16] LUO J, TONG N, BU S, et al. Internal modal resonance analysis for full converter-based wind generation using analytical inertia model[J]. IEEE Transactions on Power Systems, 2024, 39(2): 3509-3522. [17] LUO J, BU S, ZHU J, et al. Modal shift evaluation and optimization for resonance mechanism investigation and mitigation of power systems integrated with FCWG[J]. IEEE Transactions on Power Systems, 2020, 35(5): 4046-4055. [18] LUO J, TENG F, BU S, et al. Converter-driven stability constrained unit commitment considering dynamic interactions of wind generation[J]. International Journal of Electrical Power & Energy Systems, 2023, 144: 108614 [19] LUO J, BU S, TENG F. An optimal modal coordination strategy based on modal superposition theory to mitigate low frequency oscillation in FCWG penetrated power systems[J]. International Journal of Electrical Power & Energy Systems, 2020, 120: 105975 [20] LUO J, BU S, ZHU J. A novel PMU-based adaptive coordination strategy to mitigate modal resonance between full converter-based wind generation and grids[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(6): 7173-7182. [21] LUO J, BU S, CHUNG C Y. Design and comparison of auxiliary resonance controllers for mitigating modal resonance of power systems integrated with wind generation[J]. IEEE Transactions on Power Systems, 2021, 36(4): 3372-3383 |
[1] | Li Ye-zi, Wang Zhen-you, Zhou Yi-lu, Han Xiao-zhuo. The Improvement and Application of Xgboost Method Based on the Bayesian Optimization [J]. Journal of Guangdong University of Technology, 2018, 35(01): 23-28.doi: 10.12052/gdutxb.240074 |
|