Journal of Guangdong University of Technology ›› 2012, Vol. 29 ›› Issue (2): 1-6.doi: doi:10.3969/j.issn.1007-7162.2012.02.001
• Feature Articles • Next Articles
[1]Aref H.Stirring by chaotic advection[J]. J Fluid Mech,1984,143:1-21.[2] Ottino J M. The kinematics of mixing: Stretching, chaos, and transport[M]. U K:Cambridge University Press,1989. [3] Adalsteinsson D, Camassa R, Harenberg S,et al. Optimal mixing enhancement in 3,d pipe flow[J]. Geophys Monogr Ser,2011,195:257-262. [4] Mezi c ' I, Loire S, Fonoberov V A,et al. A new mixing diagnostic and gulf oil spill movement[J].Science,2010,330(6003):486-489.[5] Avellaneda M, A Majda J. Stieltjes integral representation and effective diffusivity bounds for turbulent transport[J]. Phys Rev Lett,1989,62:753-755.[6] Batchelor G K. Diffusion in a field of homogeneous turbulence I Eulerian Analysis[J]. Aust J Sci Res,1949,2:437-450.[7] Falkovich G, Gawdzki K, Vergassola M. Particles and fields in turbulent flows[J]. Siam J Appl Math,1994,54:333-408. [8] Warhaft Z. Passive scalars in turbulent flows[J]. Ann Rev Fluid Mech,2000,32:203-240. [9] 刘亚明,柳朝晖,贺铸,等. 湍流被动标量研究的最新远展[J]. 力学进展, 2005,35(4):549-558. Liu Yaming, Liu Zhaohui,He Zhu,et al.Recent progress instatistics of turbulent passive scalar[J].Advances in Mechanics,2005,35(4):549-558. [10] Keating S R, Kramer P R, Smith K S. Homogenization and mixing measures for a replenishing passive scalar field[J].Phys Fluids,2010,22:75-105. [11] Lin Z,Boová K,Doering C R. Models and measures of mixing and effective diffusion[J]. Discr Cont Dyn Sys,2010,28:259-274. [12] Majda A J, Kramer P R. Simplified models for turbulent diffusion: Theory, numerical modelling and physical phenomena[J]. Phys Reports,1999,314(4/5):237-574.[13] Plasting S, Young W R. A bound on scalar variance for the advection diffusion equation[J].J Fluid Mech, 2006,552:289-298. [14] Shaw T A, Thiffeault J L, Doering C R. Stirring up trouble: Multi scale mixing measures for steady scalar sources[J]. Physica D,2007,231(2):143-164. [15] Thiffeault J L, Doering C R, Gibbon J D. A bound on scalar variance for the advectiondiffusion equation[J]. J Fluid Mech,2004,521:105-114. [16] Camassa R, Lin Z, McLaughlin R M. Evolution of the probability measure for the majda model: New invariant measures and breathing PDFs[J]. J Stat Phys,2008,130(2):343-371.[17] Mi J. Correlation between non,gaussian statistics of a scalar and its dissipation rate[J]. Phys Rev E,2006,74(1):016301. [18] Eckart C. An analysis of the stirring and mixing processes in incompressible fluids[J]. J Mar Res,1948,7:265-275.[19] Thiffeault J L. Using multiscale norms to quantify mixing and transport[J]. Nonlinearity,2012,84(3):R1R44.[20] Mathew G, Mezic'SymbolQCpI, Petzold L. A multiscale measure for mixing[J]. Physica D, 2005,211(1/2):23-46.[21] Doering C R, Thiffeault J L. Multiscale mixing efficiencies for steady sources[J]. Phys Rev E,2006,74(2):025301(R). [22] Camassa R, Lin Z, McLaughlin R M. The exact evolution of the scalar variance in pipe and channel flows[J]. Commun Math Sci,2010,8(2):601-626. [23] Cortelezzi L, Adrover A, Giona M. Feasibility, efficiency and transportability of short,horizon optimal mixing protocols[J]. J Fluid Mech,2008,597:199=231. [24] Liu W J. Mixing enhancement by optimal flow advection[J]. SIAM J Control and Opt,2008,47:624-638. [25] Mathew G, Mezic'I, Grivopoulos S,et al. Optimal control of mixing in stokes fluid flows[J]. J Fluid Mech,2007,580:261-281. [26] Lin Z, Doering C R, Thiffeault J L. An optimal stirring strategy for passive scalar mixing[J]. J Fluid Mech,2011,675:465-476. |
No related articles found! |
|