Journal of Guangdong University of Technology ›› 2019, Vol. 36 ›› Issue (04): 18-23.doi: 10.12052/gdutxb.190039
Previous Articles Next Articles
Gao Jun-yan, Liu Wen-yin, Yang Zhen-guo
CLC Number:
[1] 张文峰, 胡振涛, 程建兴. 一种车辆机动目标跟踪的多传感器信息融合估计算法[J]. 广东工业大学学报, 2009, 26(1):36-39 ZHANG W F, HU Z T, CHENG J X. A multisensor data fusion estimation algorithm for vehicle maneuvering target tracking[J]. Journal of Guangdong University of Technology, 2009, 26(1):36-39 [2] 吴智敏, 何汉武, 吴悦明. 基于混合现实交互的指挥棒位姿跟踪[J]. 广东工业大学学报, 2018, 35(3):111-116 WU Z M, HE H W, WU Y M. Baton-like attitude tracking based on mixed reality interaction[J]. Journal of Guangdong University of Technology, 2018, 35(3):111-116 [3] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 2015, 37(3):583-596 [4] MA C, HUANG J B, YANG X, et al. Hierarchical convo-lutional features for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago:IEEE, 2015:3074-3082. [5] QI Y, ZHANG S, QIN L, et al. Hedged deep tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada:IEEE, 2016:4303-4311. [6] DANELLJAN M, ROBINSON A, KHAN F S, et al. Be-yond correlation filters:Learning continuous convolution operators for visual tracking[C]//European Conference on Computer Vision. Amsterdam:Springer, 2016:472-488. [7] DANELLJAN M, BHAT G, KHAN F S, et al. ECO:efficient convolution operators for tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii:IEEE, 2017:6638-6646. [8] NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada:IEEE, 2016:4293-4302. [9] HELD D, THRUN S, SAVARESE S. Learning to track at 100 fps with deep regression networks[C]//European Conference on Computer Vision. Amsterdam:Springer, 2016:749-765. [10] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]//European Conference on Computer Vision. Amsterdam:Springer, 2016:850-865. [11] HE A, LUO C, TIAN X, et al. A twofold siamese network for real-time object tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, Utah:IEEE, 2018:4834-4843. [12] LI B, YAN J, WU W, et al. High performance visual tracking with siamese region proposal network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, Utah:IEEE, 2018:8971-8980. [13] ZHU Z, WU W, ZOU W, et al. End-to-end flow correlation tracking with spatial-temporal attention[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, Utah:IEEE, 2018:548-557. [14] GUO Q, FENG W, ZHOU C, et al. Learning dynamic siamese network for visual object tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice:IEEE, 2017:1763-1771. [15] RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252 [16] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. Lake Tahoe:NIPS Foundation, 2012:1097-1105. [17] WANG Q, TENG Z, XING J, et al. Learning attentions:residual attentional siamese network for high performance online visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, Utah:IEEE, 2018:4854-4863. [18] WU Y, LIM J, YANG M H. Online object tracking:A benchmark[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland, Oregon:IEEE, 2013:2411-2418. [19] WU Y, LIM J, YANG M H. Object Tracking Benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1834-1848 [20] KRISTAN M, LEONARDIS A, MATAS J, et al. The visual object tracking vot2017 challenge results[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice:IEEE, 2017:1949-1972. [21] RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252 [22] VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End-to-end representation learning for correlation filter based tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii:IEEE, 2017:2805-2813. [23] BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple:Complementary learners for real-time tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada:IEEE, 2016:1401-1409. |
[1] | Xie Guo-bo, Lin Li, Lin Zhi-yi, He Di-xuan, Wen Gang. An Insulator Burst Defect Detection Method Based on YOLOv4-MP [J]. Journal of Guangdong University of Technology, 2023, 40(02): 15-21. |
[2] | Wu Jun-xian, He Yuan-lie. Channel Attentive Self-supervised Network for Monocular Depth Estimation [J]. Journal of Guangdong University of Technology, 2023, 40(02): 22-29. |
[3] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9. |
[4] | Huang Jian-hang, Wang Zhen-you. A Research on Deep Learning Object Detection Algorithm Based on Feature Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(04): 52-58. |
[5] | Teng Shao-hua, Dong Pu, Zhang Wei. An Attention Text Summarization Model Based on Syntactic Structure Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(03): 1-8. |
[6] | Liang Guan-shu, Cao Jiang-zhong, Dai Qing-yun, Huang Yun-fei. An Unsupervised Trademark Retrieval Method Based on Attention Mechanism [J]. Journal of Guangdong University of Technology, 2020, 37(06): 41-49. |
[7] | Zeng Bi-qing, Han Xu-li, Wang Sheng-yu, Xu Ru-yang, Zhou Wu. Sentiment Classification Based on Double Attention Convolutional Neural Network Model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 10-17. |
|