Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (06): 1-9.doi: 10.12052/gdutxb.220123

• Comprehensive Studies •     Next Articles

A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example

Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi   

  1. School of Management, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2022-07-20 Online:2022-11-10 Published:2022-11-25

Abstract: Identifying the sentiment polarity of movie customer group reviews may inspire the platform to optimize movie recommendation algorithms and improve services and provide suggestions for consumers' movie choices. A MABM sentiment polarity recognition model is proposed based on the multi-head self-attention bidirectional long-short term mechanism. Using the online review data of the well-known movie review website Douban Review as the corpus, text mining tools are used to pre-process the data. Then dividing the data into training and test sets according to 8:2, and using 10 machine learning models and 4 deep learning models as the control group, the effectiveness and robustness of the MABM model are evaluated by cross-validation and test set validation comparison. In the two sets of comparison experiments, it is found that the deep neural network model predicts overall better than the machine learning model, and the MABM model used as the control set has the best classification results. The MABM model can effectively identify the sentiment polarity of consumer reviews, providing management insights and algorithm improvement suggestions for movie recommendation platforms.

Key words: sentiment analysis, deep learning, multihead self-attention mechanism, bidirectional long-short term memory neural network

CLC Number: 

  • TP319.4
[1] SALINCA A. Business reviews classification using sentiment analysis[C]//2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. Timisoara: IEEE, 2015: 247-250.
[2] 易闽琦, 刘洪伟, 高鸿铭. 电商平台产品共同购买网络的影响因素研究[J]. 广东工业大学学报, 2022, 39(3): 16-24.
YI M Q, LIU H W, GAO H M. Research on the factors influencing the co-purchase network of products on e-commerce platforms [J]. Journal of Guangdong University of Technology, 2022, 39(3): 16-24.
[3] 张舒, 莫赞, 柳建华, 等. 基于NWD集成算法的多粒度微博用户兴趣画像构建[J]. 广东工业大学学报, 2020, 37(4): 42-50.
ZHANG S, MO Z, LIU J H, et al. Multi-granularity microblog user interest portrait construction based on NWD integrated algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(4): 42-50.
[4] 刘洪伟, 詹明君, 高鸿铭, 等. 基于消费者行为流视域的产品竞争市场结构分析[J]. 广东工业大学学报, 2021, 38(2): 26-33.
LIU H W, ZHAN M J, GAO H M, et al. A product competitive market structure analysis based on consumer behavioral stream [J]. Journal of Guangdong University of Technology, 2021, 38(2): 26-33.
[5] KRUMM J, DAVIES N, NARAYANASWAMI C. User-generated content [J]. IEEE Pervasive Computing, 2008, 7(4): 10-11.
[6] DAUGHERTY T, EASTIN M S, BRIGHT L. Exploring consumer motivations for creating user-generated content [J]. Journal of Interactive Advertising, 2008, 8(2): 16-25.
[7] YASEN M, TEDMORI S. Movies reviews sentiment analysis and classification[C]// BOWYER K. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT) . Amman: IEEE, 2019: 860-865.
[8] MISHNE G, GLANCE N S. Predicting movie sales from blogger sentiment[C]// NICOLOV N. AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs. California: AAAI Spring Symposium. 2006: 155-158.
[9] PANG B, LEE L. Opinion mining and sentiment analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2(1-2) : 1-135.
[10] VINODHINI G, CHANDRASEKARAN R M. Sentiment analysis and opinion mining: a survey [J]. International Journal, 2012, 2(6): 282-292.
[11] MAAS A, DALY R E, PHAM P T, et al. Learning word vectors for sentiment analysis[C]// EISNER J. Human Language Technologies. Oregon: Association for Computational Linguistics. 2011: 142-150.
[12] Al-SAQQA S, AWAJAN A. The use of word2vec model in sentiment analysis: a survey[C]// AWAJAN A. Robotics and Control. New York: Association for Computing Machinery. 2019: 39-43.
[13] VO N, HAYS J. Generalization in metric learning: should the embedding layer be embedding layer? [C]// BOWYER K. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) . USA: IEEE, 2019: 589-598.
[14] WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C]//JIAN S. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. USA: ACM. 2016: 606-615.
[15] LI L, YANG L, ZENG Y. Improving sentiment classification of restaurant reviews with attention-based Bi-GRU neural network [J]. Symmetry, 2021, 13(8): 1517.
[16] GAO Z J, FENG A, SONG X Y, et al. Target-dependent sentiment classification with BERT [J]. IEEE Access, 2019, 7: 154290-154299.
[17] 杜嘉晨. 社交媒体文本情感分析及对话生成研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[18] 王颖洁, 朱久祺, 汪祖民, 等. 自然语言处理在文本情感分析领域应用综述[J]. 计算机应用, 2022, 42(4): 1011-1020.
WANG Y J, ZHU J Q, WANG Z M, et al. Review of applications of natural language processing in text sentiment analysis [J]. Journal of Computer Applications, 2022, 42(4): 1011-1020.
[19] 罗玉萍, 潘庆先, 刘丽娜, 等. 基于情感挖掘的学生评教系统设计及其应用[J]. 中国电化教育, 2018(4): 91-95.
LUO Y P, PAN Q X, LIU L N, et al. Design and application of teaching evaluation system based on sentiment mining [J]. China Educational Technology, 2018(4): 91-95.
[20] 周知, 王春迎, 朱佳丽. 基于超短评论的图书领域情感词典构建研究[J]. 情报理论与实践, 2021, 44(9): 183-189.
ZHOU Z, WANG C Y, ZHU J L. Research on the construction of sentiment lexicon in book field based on extreme short reviews [J]. Information Studies:Theory & Application, 2021, 44(9): 183-189.
[21] 阳林. 情感词权值研究及在情感极性分析中的应用[J]. 计算机应用, 2015, 35(S2): 125-127.
YANG L. Emotional term weight research and application to emotional polarity analysis [J]. Journal of Computer Applications, 2015, 35(S2): 125-127.
[22] 邱禹臣. 基于深度学习的猫眼电影评论情感分析[D]. 长春: 吉林大学, 2021.
[23] 邓君, 孙绍丹, 王阮, 等. 基于Word2Vec和SVM的微博舆情情感演化分析[J]. 情报理论与实践, 2020, 43(8): 112-119.
DENG J, SUN S D, WANG R, et al. Evolution analysis of weibo public opinion emotion based on Word2Vec and SVM [J]. Information Studies:Theory & Application, 2020, 43(8): 112-119.
[24] 余传明, 原赛, 王峰, 等. 大数据环境下文本情感分析算法的规模适配研究: 以Twitter为数据源[J]. 图书情报工作, 2019, 63(4): 101-111.
YU C M, YUAN S, WANG F, et al. Research on scale adaptation of text sentiment analysis algorithm in big data environment: using twitter as data source [J]. Library and Information Service, 2019, 63(4): 101-111.
[25] 何野, 杨会成, 潘玥, 等. 基于改进CNN的文本情感分析[J]. 平顶山学院学报, 2021, 36(5): 59-62.
HE Y, YANG H C, PAN Y, et al. Study on the text sentiment analysis based on improved CNN [J]. Journal of Pingdingshan University, 2021, 36(5): 59-62.
[26] PANG B, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning technique [EB/OL]. (2002-05-28) [2022-08-26]. https://doi.org/10.48550/arXiv.cs/0205070.
[27] ALHARBI N M, ALGHAMDI N S, ALKHAMMASH E H, et al. Evaluation of sentiment analysis via word embedding and RNN variants for amazon online reviews [J]. Mathematical Problems in Engineering, 2021: 532-543.
[28] 洪文兴, 杞坚玮, 王玮玮, 等. 基于公共特征空间的自适应情感分类[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(6): 631-637.
HONG W X, QI J W, WANG W W, et al. Domain adaptation with common feature space for sentiment classification [J]. Journal of Tianjin University (Science and Technology), 2019, 52(6): 631-637.
[29] 胡艳丽, 童谭骞, 张啸宇, 等. 融入自注意力机制的深度学习情感分析方法[J]. 计算机科学, 2022, 49(1): 252-258.
HU Y L, TONG T Q, ZHANG X Y, et al. Self-attention based BGRU and CNN for sentiment analysis [J]. Computer Science, 2022, 49(1): 252-258.
[30] 朱丽, 杨青, 吴涛, 等. 基于CNN和Bi-LSTM的脑电波情感分析[J]. 应用科学学报, 2022, 40(1): 1-12.
ZHU L, YANG Q, WU T, et al. Emotional analysis of brain waves based on CNN and Bi-LSTM [J]. Journal of Applied Sciences, 2022, 40(1): 1-12.
[31] 钟佳娃, 刘巍, 王思丽, 等. 文本情感分析方法及应用综述[J]. 数据分析与知识发现, 2021, 5(6): 1-13.
ZHONG J W, LIU W, WANG S L, et al. Review of methods and applications of text sentiment analysis [J]. Data Analysis and Knowledge Discovery, 2021, 5(6): 1-13.
[32] YU Y, SI X, HU C, et al. A review of recurrent neural networks: LSTM cells and network architectures [J]. Neural Computation, 2019, 31(7): 1235-1270.
[33] HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging [EB/OL]. (2015-08-09) [2022-08-26]. https://arxiv.org/abs/1508.01991.
[34] GRAVES A, SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures [J]. Neural Networks, 2005, 18(5-6): 602-610.
[35] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// VASWANI A . Advances in Neural Information Processing Systems. California: NIPS, 2017: 6000-6010.
[36] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [EB/OL]. (2019-05-24) [2022-08-26]. https://arxiv.org/abs/1810.04805.
[37] HUANG C Z A, VASWANI A, USZKOREIT J, et al. Music transformer [EB/OL]. (2018-12-12) [2022-08-26]. https://doi.org/10.48550/arXiv.1809.04281.
[38] HAN K, WANG Y, CHEN H, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. https://ieeexplore.ieee.org/abstract/document/9716741. DOI: 10.1109/TPAMI.2022.3152247.
[1] Liu Dong-ning, Wang Zi-qi, Zeng Yan-jiao, Wen Fu-yan, Wang Yang. Prediction Method of Gene Methylation Sites Based on LSTM with Compound Coding Characteristics [J]. Journal of Guangdong University of Technology, 2023, 40(01): 1-9.
[2] Xu Wei-feng, Cai Shu-ting, Xiong Xiao-ming. Visual Inertial Odometry Based on Deep Features [J]. Journal of Guangdong University of Technology, 2023, 40(01): 56-60,76.
[3] Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8.
[4] Zheng Jia-bi, Yang Zhen-guo, Liu Wen-yin. Marketing-Effect Estimation Based on Fine-grained Confounder Balancing [J]. Journal of Guangdong University of Technology, 2022, 39(02): 55-61.
[5] Gary Yen, Li Bo, Xie Sheng-li. An Evolutionary Optimization of LSTM for Model Recovery of Geophysical Fluid Dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(06): 1-8.
[6] Lai Jun, Liu Zhen-yu, Liu Sheng-hai. A Small Sample Data Prediction Method Based on Global Data Shuffling [J]. Journal of Guangdong University of Technology, 2021, 38(03): 17-21.
[7] Tan You-xin, Teng Shao-hua. Combined Weighting Method for Short Text Features [J]. Journal of Guangdong University of Technology, 2020, 37(05): 51-61.
[8] Cen Shi-jie, He Yuan-lie, Chen Xiao-cong. A Monocular Depth Estimation Combined with Attention and Unsupervised Deep Learning [J]. Journal of Guangdong University of Technology, 2020, 37(04): 35-41.
[9] Zeng Bi, Ren Wan-ling, Chen Yun-hua. An Unpaired Face Illumination Normalization Method Based on CycleGAN [J]. Journal of Guangdong University of Technology, 2018, 35(05): 11-19.
[10] Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin. Loop Closure Detection for Visual SLAM Using Convolutional Neural Networks [J]. Journal of Guangdong University of Technology, 2018, 35(05): 31-37.
[11] Rao Dong-ning, Huang Si-hong. Model Optimization of Financial Corpus Sentiment Analysis Based on THUCTC [J]. Journal of Guangdong University of Technology, 2018, 35(03): 37-42.
[12] Chen Xu, Zhang Jun, Chen Wen-wei, Li Shuo-hao. Convolutional Neural Network Algorithm and Case [J]. Journal of Guangdong University of Technology, 2017, 34(06): 20-26.
[13] Liu Zhen-yu, Li Jia-jun, Wang Kun. A Fingerprint Matching Localization Method Based on Deep Auto Encoder [J]. Journal of Guangdong University of Technology, 2017, 34(05): 15-21.
[14] Chen Bing-feng, Hao Zhi-feng, Cai Rui-chu, Wen Wen, Wang Li-juan, Huang Hao, Cai Xiao-feng. A Fine-grained Sentiment Analysis Algorithm for Automotive Reviews [J]. Journal of Guangdong University of Technology, 2017, 34(03): 8-14.
[15] LIANG Li-Xin, HAO Zhi-Feng, CAI Rui-Chu, WEN Wen. An Approach to Sentiment Analysis of Chinese Microblogs Based on Gaussian Mixture Distribution Pseudo-sample Generation [J]. Journal of Guangdong University of Technology, 2016, 33(06): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!