Journal of Guangdong University of Technology ›› 2020, Vol. 37 ›› Issue (05): 87-93.doi: 10.12052/gdutxb.200048

Previous Articles     Next Articles

A Multi-objective Optimization of Milling Parameters for 6061 Aluminum Alloy

Tang Chao-lan, Xie Yi   

  1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-03-16 Online:2020-09-17 Published:2020-09-17

Abstract: The selection of parameters in aluminum alloy processing is a key factor that affects the efficiency and quality of aluminum alloy parts processing, reducing manufacturing costs and improving equipment service life. Multi-objective optimization of the parameters of 6061 aluminum alloy milling process was studied. With the five process parameters of spindle speed, feed speed, axial feed, radial feed and tool diameter as experimental factors, a five-factor and five-level orthogonal experiment of 6061 aluminum alloy high-speed milling was performed. The experimental results were analyzed by GA-BP prediction model to establish the non-linear relationship between milling parameters and surface roughness. On this basis, a multi-objective optimization model was developed aiming at the maximum material removal rate and the lowest surface roughness, and the model was solved by the gamultiobj function based on the NSGA-II algorithm. The results show that the optimized process parameters of 6061 aluminum alloy high-speed milling range at the spindle speed of 12000~13000 r·min-1, with radial feed of 0.19~0.21 mm, feed speed of 1272~1300 mm·min-1, axial feed of 6~8 mm, and tool diameter of 4 mm.

Key words: 6061 aluminum alloy, orthogonal experiment, milling, process parameters, multi-objective optimization

CLC Number: 

  • TH161.1
[1] 于信伟, 冯明军, 王学惠. 高速铣削参数对铝合金零件表面粗糙度的影响[J]. 黑龙江科技学院学报, 2010, 20(2): 91-93
YU X W, FENG M J, WANG X H. Influence of high-speed milling parameters on aluminum alloy work-piece surface roughness [J]. Journal of Heilongjiang Institute of Science and Technology, 2010, 20(2): 91-93
[2] 王云霞, 漆小敏. 汽车6061铝合金材料切削加工理论及实验研究[J]. 机械强度, 2019, 41(6): 1345-1350
WANG Y X, QI X M. Theory and experimental research on cutting processing of automobile 6061 aluminum alloy materials [J]. Journal of Mechanical Strength, 2019, 41(6): 1345-1350
[3] 周志恒, 张超勇, 谢阳, 等. 数控车床切削参数的能量效率优化[J]. 计算机集成制造系统, 2015, 21(9): 2410-2418
ZHOU Z H, ZHANG C Y, XIE Y, et al. Cutting parameters optimization for processing energy and efficiency in CNC lathe [J]. Computer Integrated Manufacturing Systems, 2015, 21(9): 2410-2418
[4] 黄晓明, 孙杰. 高速铣削7050-T7451铝合金表面粗糙度研究[J]. 中国工程机械学报, 2014, 12(3): 248-251
HUANG X M, SUN J. Research on surface roughness of 7050-T7451 aluminum alloy by high speed milling [J]. Chinese Journal of Construction Machinery, 2014, 12(3): 248-251
[5] 丁涛. 6061铝合金铣削加工表面粗糙度研究[J]. 农业装备与车辆工程, 2018, 56(12): 60-62
DING T. Research on surface roughness of 6061 aluminum alloy by milling [J]. Agricultural Equipment & Vehicle Engineering, 2018, 56(12): 60-62
[6] 伍文进, 徐中云, 严帅, 等. 基于正交试验的6061铝合金铣削工艺研究[J]. 机床与液压, 2018, 46(14): 27-30
WU W J, XU Z Y, YAN S, et al. Study of milling process for 6061 aluminum alloy based on orthogonal experiment [J]. Machine Tool & Hydraulics, 2018, 46(14): 27-30
[7] AJITH ARUL DANIEL S, PUGAZHENTHI R, KUMAR R. Multi objective prediction and optimization of control parameters in the milling of aluminium hybrid metal matrix composites using ANN and Taguchi-grey relational analysis [J]. Defence Technology, 2019, 15(4): 545-556
[8] 姚倡锋, 张定华, 黄新春, 等. TC11钛合金高速铣削的表面粗糙度与表面形貌研究[J]. 机械科学与技术, 2011, 30(9): 1573-1578
YAO C F, ZHANG D H, HUANG X C, et al. Exploring surface roughness and surface morphology of high-speed milling TC11 titanium alloy [J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(9): 1573-1578
[9] LI J, YANG X, REN C. Multi-objective optimization of cutting parameters in Ti-6Al-4V milling process using nondominated sorting genetic algorithm-II [J]. International Journal of Advanced Manufacturing Technology, 2015, 76(5-8): 941-953
[10] 王立新, 张程焱, 俎晓莉, 等. 切削参数对高强铝合金干切削加工表面形貌的影响[J]. 工具技术, 2019, 53(11): 29-33
WANG L X, ZHANG C Y, ZU X L, et al. Effects of cutting parameters on machined surface morphology of high strength aluminium alloy under dry cutting [J]. Tool Engineering, 2019, 53(11): 29-33
[11] 谢黎明, 张威, 靳岚. 6061铝合金高速铣削切削参数对表面粗糙度的影响分析[J]. 机械设计与制造工程, 2018, 47(3): 56-60
XIE L M, ZHANG W, JIN L. The analysis on the influence of cutting parameters to surface roughness in the high speed milling 6061 aluminum alloy [J]. Machine Design and Manufacturing Engineering, 2018, 47(3): 56-60
[12] 邓朝晖, 符亚辉, 万林林, 等. 面向绿色高效制造的铣削工艺参数多目标优化[J]. 中国机械工程, 2017, 28(19): 2365-2372
DENG C H, FU Y H, WANG L L, et al. Multi objective optimization of milling process parameters for green high-performance manufacturing [J]. China Mechanical Engineering, 2017, 28(19): 2365-2372
[13] 梁爽, 唐晓, 江磊, 等. GA-BP神经网络预测钛合金表面粗糙度[J]. 机械设计与制造, 2019(8): 265-268
LIANG S, TANG X, JIANG L, et al. GA-BP neural network optimized by genetic algorithm predict the surface roughness of titanium alloy [J]. Machinery Design & Manufacture, 2019(8): 265-268
[14] BANDAPALLI C, SUTARIA B M, BHATT D V. Experimental investigation and estimation of surface roughness using ANN, GMDH & MRA models in high speed micro end milling of titanium alloy (Grade-5) [J]. Materials Today Proceedings, 2017, 4(2): 1019-1028
[15] 李帆, 闫献国, 陈峙, 等. 基于遗传算法优化BP神经网络的YG8硬质合金耐磨性预测模型[J]. 金属热处理, 2019, 44(12): 244-248
LI F, YAN X G, CHEN Z, et al. Prediction model of wear resistance of YG8 cemented carbide based on BP neural network optimized by genetic algorithm [J]. Heat Treatment of Metals, 2019, 44(12): 244-248
[16] MIA M, DHAR N R. Prediction of surface roughness in hard turning under high pressure coolant using artificial neural network [J]. Measurement, 2016, 92: 464-474
[17] ZAIN A M, HARON H, SHARIF S. Prediction of surface roughness in the end milling machining using artificial neural network [J]. Expert Systems with Applications, 2010, 37(2): 1755-1768
[18] 郗伟杰, 李东辉. 基于遗传算法优化BP神经网络的接触网磨耗预测[J]. 电气化铁道, 2019, 30(S1): 47-49
XI W J, LI D H. BP neural network based genetic algorithm optimization for prediction of OCS wear [J]. Electric Railway, 2019, 30(S1): 47-49
[19] 段少军. 基于遗传算法的LVDT性能参数多目标优化[D]. 武汉: 武汉科技大学, 2016.
[1] Zhou Yi-lu, Wang Zhen-you, Li Ye-zi, Li Feng. A Quadratic Scalarizing Function in MOEA/D and its Performance on Multi and Many-Objective Optimization [J]. Journal of Guangdong University of Technology, 2018, 35(04): 37-44.
[2] Tang Jun-jie, Chen Jing-hua, Qiu Ming-jin. Multi-objective Dispatch of Microgrid Based on Dynamic Fuzzy Chaotic Particle Swarm Algorithm [J]. Journal of Guangdong University of Technology, 2018, 35(03): 100-106.
[3] HUANG Mei-hua, WEN Jie-chang, HE Yong. An Improved Artificial Fish Swarm Algorithm for Multi-objective Knapsack Problem [J]. Journal of Guangdong University of Technology, 2016, 33(05): 44-48.
[4] LI Yang, WANG Yu. The Optimization of Expert System by  Scheduling Process Parameters of Plastic Extruder [J]. Journal of Guangdong University of Technology, 2015, 32(3): 73-78.
[5] XU Huan, WEN Jie-Chang. Application of Differential Evolution Algorithm in Optimizing the Logistics Distribution Vehicle Routing Problem [J]. Journal of Guangdong University of Technology, 2013, 30(4): 61-64.
[6] ZHANG Jin-Feng- , CHEN Wei-Li. Application of Multi-objective Evolutionary Algorithm in the Location of Logistics Distribution Centers [J]. Journal of Guangdong University of Technology, 2010, 27(4): 76-80.
[7] Mao Ling-bo1,Zhang Ren-yuan1,Ke Xiu-fang1,Pang Jin-shan1,2. Influence of Dispersion Mode on Stability of Carbon-black Nano-suspensions [J]. Journal of Guangdong University of Technology, 2009, 26(3): 13-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!