Journal of Guangdong University of Technology ›› 2020, Vol. 37 ›› Issue (06): 41-49.doi: 10.12052/gdutxb.200027
Previous Articles Next Articles
Liang Guan-shu1, Cao Jiang-zhong1, Dai Qing-yun1,2, Huang Yun-fei1
CLC Number:
[1] PHAN R, ANDROUTSOS D. Content-based retrieval of logo and trademarks in unconstrained color image databases using color edge gradient co-occurrence histograms [J]. Computer Vision and Image Understanding, 2010, 114(1): 66-84. [2] LAM C, WU J, MEHTRE B. STAR-A system for trademark archival and retrieval [J]. World Patent Information, 1996, 4(18): 249-249. [3] OJALA T, PIETIKÄINEN M, MÄENPÄÄ T. A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classification[C]//Proceedings of the International Conference on Advances in Pattern Recognition. Brazil: Springer, 2001: 399-408. [4] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. [5] OLIVA A, TORRALBA A. Modeling the shape of the scene: a holistic representation of the spatial envelope [J]. International Journal of Computer Vision, 2001, 42(3): 145-175. [6] SIVIC J, ZISSERMAN A. Video Google: A text retrieval approach to object matching in videos[C]// Ninth IEEE International Conference on Computer Vision. France: IEEE, 2003: 1470-1477. [7] LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. [8] HER I, MOSTAFA K, HUNG H K. A hybrid trademark retrieval system using four-gray-level zernike moments and image compactness indices [J]. International Journal of Image Processing (IJIP), 2011, 4(6): 631-646. [9] 张皓, 吴建鑫. 基于深度特征的无监督图像检索研究综述[J]. 计算机研究与发展, 2018, 55(9): 1829-1842. ZHANG H, WU J X. A survey on unsupervised image retrieval using deep features [J]. Journal of Computer Research and Development, 2018, 55(9): 1829-1842. [10] TURSUN O, AKER C, KALKAN S. A large-scale dataset and benchmark for similar trademark retrieval[J]. arXiv preprint arXiv: 170105766, 2017. [11] PEREZ C A, ESTÉVEZ P A, GALDAMES F J, et al. Trademark image retrieval using a combination of deep convolutional neural networks[C]// Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro: IEEE, 2018: 1-7. [12] WU Z, XIONG Y, YU S X, et al. Unsupervised feature learning via non-parametric instance discrimination[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3733-3742. [13] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv: 14090473, 2014. [14] WOO S, PARK J, LEE J-Y, et al. Cbam: convolutional block attention module[C]// Proceedings of the Proceedings of the European Conference on Computer Vision. Munich: ECCV, 2018: 13-19. [15] GUTMANN M, HYVÄRINEN A. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models[J]. Journal of Machine Learning Research, 2010, 9: 297-304. [16] YANG Z, YANG D, DYER C, et al. Hierarchical attention networks for document classification[C]// Proceedings of the Association for Computational Linguistics. North American: human language technologies, 2016: 1480-1489. [17] ZHOU G, ZHU X, SONG C, et al. Deep interest network for click-through rate prediction[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018: 1059-1068. [18] KIM S, HORI T, WATANABE S. Joint CTC-attention based end-to-end speech recognition using multi-task learning[C]// Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New Orleans, LA: IEEE, 2017: 4835-4839. [19] ZHU Y, LI R, YANG Y, et al. Learning cascade attention for fine-grained image classification[J]. Neural Networks, 2020, 122: 174-182. [20] FU J, ZHENG H, MEI T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]// IEEE Conference on Computer Vision & Pattern Recognition. Honolulu, HI: IEEE, 2017: 4438-4446. [21] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141. [22] LASKAR Z, KANNALA J. Context aware query image representation for particular object retrieval[C]//Proceedings of the Scandinavian Conference on Image Analysis. Scandinavian: Springer, 2017: 88-99. [23] JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks[C]// Proceedings of the Advances in Neural Information Processing Systems. Lake tahoe Nevada: NIPS, 2015: 2017-2025. [24] CHEN L, ZHANG H, XIAO J, et al. SCA-CNN: Spatial and channel-wise attention in convolutional networks for image captioning[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, 2017: 5659-5667. [25] WANG F, XIANG X, CHENG J, et al. Normface: L2 hypersphere embedding for face verification[C]// Proceedings of International Conference on Multimedia. Multimedia: ACM, 2017: 1041-1049. [26] PARIKH N, BOYD S. Proximal algorithms [J]. Foundations and Trends® in Optimization, 2014, 1(3): 127-239. [27] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2016: 770-778. [28] LEI Z, FUZONG L, BO Z. A CBIR method based on color-spatial feature[C]//Proceedings of IEEE Region 10 Conference. Cheju Island: IEEE, 1999: 166-169. [29] DOUZE M, JÉGOU H, SANDHAWALIA H, et al. Evaluation of gist descriptors for web-scale image search[C]// Proceedings of the ACM International Conference on Image and Video. Retrieval. Santorini Island: ACM, 2009: 1-8. [30] RUSIÑOL M, LLADÓS J. Efficient logo retrieval through hashing shape context descriptors[C]//Proceedings of the 9th IAPR International Workshop on Document Analysis Systems. Boston: ACM, 2010: 215-222. [31] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF) [J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359. [32] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//proceedings of Conference on Computer Vision and Pattern Recognition. California: IEEE, 2005: 886-893. [33] VURAL M F, YARDIMCI Y, TEMIZEI A. Registration of multispectral satellite images with orientation-restricted SIFT[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Cape Town: IEEE, 2009: 243-246. [34] AKER C, TURSUN O, KALKAN S. Analyzing deep features for trademark retrieval[C]//Signal Processing and Communications Applications Conference. Antalya: IEEE, 2017: 1-4. [35] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]// Proceedings of the Advances in neural information processing systems. Curran Associates Inc: NIPS, 2012: 1097-1105. [36] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE, 2015: 1-9. [37] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv Preprint arXiv: 14091556, 2014. [38] TURSUN O, DENMAN S, SRIDHARAN S, et al. Enhancing feature invariance with learned image transformations for image retrieval[J]. arXiv Preprint arXiv: 200201642, 2020. |
[1] | Wu Jun-xian, He Yuan-lie. Channel Attentive Self-supervised Network for Monocular Depth Estimation [J]. Journal of Guangdong University of Technology, 2023, 40(02): 22-29. |
[2] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9. |
[3] | Teng Shao-hua, Dong Pu, Zhang Wei. An Attention Text Summarization Model Based on Syntactic Structure Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(03): 1-8. |
[4] | Zeng Bi-qing, Han Xu-li, Wang Sheng-yu, Xu Ru-yang, Zhou Wu. Sentiment Classification Based on Double Attention Convolutional Neural Network Model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 10-17. |
[5] | Gao Jun-yan, Liu Wen-yin, Yang Zhen-guo. Object Tracking Combined with Attention and Feature Fusion [J]. Journal of Guangdong University of Technology, 2019, 36(04): 18-23. |
|