Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (01): 82-88.doi: 10.12052/gdutxb.200025

• Comprehensive Studies • Previous Articles     Next Articles

Two Equalities of Multiple Laplace-Stieltjes Transform

Bi Jia-ye, Huo Ying-ying   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2012-02-12 Online:2021-01-25 Published:2020-12-21

Abstract: Inspired by an important equality in the study of the growth of Dirichlet series, the corresponding results are generalized in this paper by invoking some properties of functions of bounded Vitali variation, some properties of Riemann-Stieltjes integral and some results from real analysis. Moreover, a well-formed equality is obtained, which is similar to the Parseval’s equality in the inner product space.

Key words: Laplace-Stieltjes transform, Dirichlet series, total variation, Riemann-Stieltjes integration

CLC Number: 

  • O174.52
[1] LEE T Y. Henstock-kurzweil Integration on euclidean Spaces[M]. Singapore :World Scientific, 2011:180-181.
[2] DURAÑONA Y VEDIA A, TREJO C A. Recintos de convergencia de las integrales dobles de Laplace-Stieltjes [J]. Publicaciones de la Facultad de Ciencias Fisicomatematicas, Universidad Nacional de la Plata, Contribucional Estudio de las Ciencias Fisicasy Matematicas, Series Matematica, 1937, 109: 315-327.
[3] BERNSTEIN D L. The double Laplace integral [J]. Duke Mathematics Journal, 1941, 8(3): 460-496.
[4] 余家荣. 二重Dirichlet级数与二重Laplace变换的收敛性[J]. 武汉大学学报(自然科学版), 1962, 1(1): 1-16.
YU J R. On the convergence of the double Dirichlet series and the double Laplace transform [J]. Wuhan University Journal of Natural Sciences, 1962, 1(1): 1-16.
[5] LIANG M L, GAO Z S. On convergence and growth of multiple dirichlet series [J]. Mathematical Notes, 2010, 88(5): 732-740.
[6] KONG Y Y, HONG Y. On the growth of Laplace-Stieltjes transforms and the singular direction of complex analysis[M]. Guangzhou:Jinan University Press, 2010.
[7] 陈青远, 霍颖莹. Dirichlet级数的广义级[J]. 广东工业大学学报, 2019, 36(4): 52-58.
CHEN Q Y, HUO Y Y. The generalized order of Dirichlet series [J]. Journal of Guangdong University of Technology, 2019, 36(4): 52-58.
[8] CUI Y Q, XU H Y, LI N. The growth on the maximum modulus of double dirichlet series [J]. Journal of Function Spaces, 2019: 1-12.
[9] LIANG M L, HUO Y Y. On order and type of multiple Dirichlet series [J]. Acta Mathematica Scientia(English Series), 2017, 37(1): 131-138.
[10] XU H Y, WANG H. The growth and approximation for an analytic function represented by Laplace-Stieltjes transforms with generalized order converging in the half plane [J]. Journal of Inequalities and Applications, 2018(1): 1-16.
[11] FOLLAND G B. Real analysis: modern techniques and their applications[M]. 2nd ed.New York: Wiley Interscience, 1999: 223.
[12] RUDIN W. Real and complex analysis[M]. 3rd ed.New York: Tata McGraw-hill education, 1987: 130.
[13] MUNKRES J R. Topology[M]. 2nd ed. New Jersey :Prenctice Hall, 2000: 130.
[14] ZORICH V A. Mathematical analysis II[M]. 2nd ed. Berlin: Springer, 2016: 381.
[15] 余家荣, 丁晓庆, 田范基. Dirichlet级数与随机Dirichlet级数的值分布[M]. 武汉: 武汉大学出版社, 2004.
[16] 张恭庆, 林源渠. 泛函分析讲义(上)[M]. 北京: 北京大学出版社, 2001: 59-62.
[1] Chen Qing-yuan, Huo Ying-ying. The Generalized Order of Dirichlet Series [J]. Journal of Guangdong University of Technology, 2019, 36(04): 52-58.
[2] ZENG Bi, MAO Qin. A Research on Algorithm of Building Wi-Fi Location Fingerprint Database [J]. Journal of Guangdong University of Technology, 2016, 33(02): 51-56.
[3] YOU Xiu-ying. The Growth of Lower Side Bitangent Laplace-Stieltjes Integral in Bilinear Strip [J]. Journal of Guangdong University of Technology, 2004, 21(1): 92-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!