Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (06): 20-28.doi: 10.12052/gdutxb.210101
Previous Articles Next Articles
Xie Sheng-li1, Liao Wen-jian1, Bai Yu-lei1, Liang Yong2, Dong Bo1,2
CLC Number:
[1] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography [J]. Science, 1991, 254(5035): 1178-1181. [2] FUJIMOTO J G, PITRIS C, BOPPART S A, et al. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy [J]. Neoplasia, 2000, 2(1-2): 9-25. [3] SU R, KIRILLIN M, CHANG E W, et al. Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics [J]. Optics Express, 2014, 22(13): 15804-15819. [4] BOER J F D, LEITGEB R, WOJTKOWSKI M. Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [J]. Biomedical Optics Express, 2017, 8(7): 3248-3280. [5] 董博, 潘兵. 光学相干层析及其在实验力学中的应用[J]. 科学通报, 2020, 65(20): 2094-2105. DONG B, PAN B. Optical coherence tomography and its applications in experimental mechanics: a review [J]. Chinese Science Bulletin, 2020, 65(20): 2094-2105. [6] SUN C, STANDISH B, VUONG B, et al. Digital image correlation-based optical coherence elastography [J]. Journal of Biomedical Optics, 2013, 18(12): 121515. [7] FU J, PIERRON F, RUIZ P D. Elastic stiffness characterization using three-dimensional full-field deformation obtained with optical coherence tomography and digital volume correlation [J]. Journal of Biomedical Optics, 2013, 18(12): 121512. [8] LIU P, GROVES R M, BENEDICTUS R. Optical coherence elastography for measuring the deformation within glass fiber composite [J]. Applied Optics, 2014, 53(22): 5070-5077. [9] ZAITSEV V Y, MATVEYEV A L, MATVEEV L A, et al. Optical coherence elastography for strain dynamics measurements in laser correction of cornea shape [J]. Journal of Biophotonics, 2017, 10(9): 1450-1463. [10] BOER J, MILNER T E, GEMERT M, et al. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography [J]. Optics Letters, 1997, 22(12): 934-936. [11] YASUNO, MAKITA, SUTOH, et al. Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography [J]. Optics Letters, 2002, 27(20): 1803-1805. [12] LEITGEB R A, WERKMEISTER R M, BLATTER C, et al. Doppler optical coherence tomography [J]. Progress in Retinal & Eye Research, 2014, 41(10): 26-43. [13] WESTPHAL V, YAZDANFAR S, ROLLINS A M, et al. Real-time, high velocity-resolution color Doppler optical coherence tomography [J]. Optics Letters, 2002, 27(1): 34-36. [14] KENNEDY B F, WIJESINGHE P, SAMPSON D D. The emergence of optical elastography in biomedicine [J]. Nature Photonics, 2017, 11(4): 215-221. [15] LARIN K V, SAMPSON D D. Optical coherence elastography-OCT at work in tissue biomechanics [J]. Biomedical Optics Express, 2017, 8(2): 1172-1202. [16] NICHALUK L, IYER R R, UNTRACHT G R, et al. Photonic force optical coherence elastography for three-dimensional mechanical microscopy [J]. Nature Communications, 2017, 9(1): 2079. [17] TORRE-IBARRA M, RUIZ P D, HUNTLEY J M. Double-shot depth-resolved displacement field measurement using phase-contrast spectral optical coherence tomography [J]. Optics Express, 2006, 14(21): 9643-9656. [18] TORRE-IBARRA M, RUIZ P D, HUNTLEY J M. Simultaneous measurement of in-plane and out-of-plane displacement fields in scattering media using phase-contrast spectral optical coherence tomography [J]. Optics Letters, 2009, 34: 806-808. [19] LIU H, DONG B, BAI Y, et al. Perspective measurement of the out-of-plane displacement and normal strain field distributions inside glass fibre-reinforced resin matrix composite [J]. Strain, 2015, 51(3): 198-205. [20] 董博, 徐金雄, 白玉磊, 等. 快速和高精度透视测量玻璃纤维/树脂复合材料构件内部的离面位移[J]. 复合材料学报, 2014, 31(2): 331-337. DONG B, XU J X, BAI Y L, et al. Rapid and high-precision measurement of out-of-plane displacement inside the glass fiber/polymer composite [J]. Acta Materiae Compositae Sinica, 2014, 31(2): 331-337. [21] ZHANG W, DONG B, ZHANG W, et al. Depth-resolved measurement of the compression displacement fields on the front and rear surfaces of an epoxy sample [J]. Optica Applicata, 2018, 48(2): 311-323. [22] DONG B, ZHANG Y, YE S, et al. Dual-channel phase-contrast spectral optical coherence tomography for simultaneously measuring axial and normal to B-scan off-axial displacements [J]. Optics and Lasers in Engineering, 2017, 96: 35-38. [23] 周延周, 朱文卓, 董博, 等. 树脂基复合材料内部离面位移场和应变场分布的动态测量[J]. 光学精密工程, 2014, 12: 3217-3223. ZHOU Y Z, ZHU W Z, DONG B, et al. Dynamical measurement of out-of-plane displacement field and strain field inside resin composite [J]. Optics and Precision Engineering, 2014, 12: 3217-3223. [24] LV Z, BAI Y, HE Z, et al. Super-resolution reconstruction of speckle phase in depth-resolved wavelength scanning interference using the total least-squares analysis [J]. Journal of the Optical Society of America. A, Optics, image science, and vision, 2019, 36(5): 869-876. [25] XU J, LIU Y, DONG B, et al. Improvement of the depth resolution in depth-resolved wavenumber-scanning interferometry using multiple uncorrelated wavenumber bands [J]. Appl Opt, 2013, 52(20): 4890-4897. [26] BAI Y, ZHOU Y, HE Z, et al. Compressed-sensing wavenumber-scanning interferometry [J]. Optics & Laser Technology, 2018, 98: 229-233. [27] BAI Y, ZHOU Y, HE Z, et al. Wavenumber synthesis approach to high-resolution wavenumber scanning interference using a mode-hoped laser [J]. Optics Express, 2018, 26(5): 5441-5451. [28] KENNEDY B F, KOH S H, MCLAUGHLIN R A, et al. Strain estimation in phase-sensitive optical coherence elastography [J]. Biomedical Optics Express, 2012, 3(8): 1865-1879. [29] MATVEYEV A L, MATVEEV L A, SOVETSKY A A, et al. Vector method for strain estimation in phase-sensitive optical coherence elastography [J]. Laser Physics Letters, 2018, 15(6): 065603. [30] ZAITSEV V Y, MATVEYEV A L, MATVEEV L A, et al. Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography [J]. Journal of Biomedical Optics, 2016, 15(6): 065603. [31] ZAITSEV V Y, MATVEYEV A L, MATVEEV L A, et al. Hybrid method of strain estimation in optical coherence elastography using combined sub-wavelength phase measurements and supra-pixel displacement tracking [J]. Journal of Biophotonics, 2016, 9(5): 499-509. [32] DONG B, ZHANG Y, PAN B. Enhancing the dynamic range of phase-sensitive optical coherence elastography by overcoming speckle decorrelation [J]. Optics Letters, 2018, 43(23): 5805-5808. [33] ZHANG Y, DONG B, BAI Y, et al. Measurement of depth-resolved thermal deformation distribution using phase-contrast spectral optical coherence tomography [J]. Optics Express, 2015, 23(21): 28067-28075. [34] DONG B, XIE S, HE Z, et al. Simultaneous measurement of temperature-dependent refractive index and depth-resolved thermal deformation fields inside polymers [J]. Polymer Testing, 2017, 65: 297-300. [35] DONG B, PAN B. Visualizing curing process inside polymers [J]. Applied Physics Letters, 2020, 116(5): 054103. [36] DONG B, PAN B, ZHANG Y, et al. Microdefect identification in polymers by mapping depth-resolved phase-difference distributions using optical coherence tomography [J]. Polymer Testing, 2018, 68: 233-237. [37] DUNKERS J P, PHELAN F R, SANDERS D P, et al. The application of optical coherence tomography to problems in polymer matrix composites [J]. Optics & Lasers in Engineering, 2001, 35(3): 135-147. [38] LIU P, GROVES R M, BENEDICTUS R. Optical coherence tomography for the study of polymer and polymer matrix composites [J]. Strain, 2014, 50(5): 436-443. [39] NISHⅡ H, NAGATSUMA T, IKEO T. Terahertz imaging based on optical coherence tomography [J]. Photonics Research, 2014, 2(4): 1-5. [40] ISRAELSEN N M, PETERSEN C R, BARH A, et al. Real-time high-resolution mid-infrared optical coherence tomography [J]. Light: Science & Applications, 2019, 8(1): 11. |
[1] | WU Zhi-Xin, DONG Bo, ZHOU Yan-Zhou. Continuous Measurement of Depth-Resolved Out-of-Plane Deformation Inside Polymers [J]. Journal of Guangdong University of Technology, 2016, 33(06): 62-66. |
|