Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (04): 9-16.doi: 10.12052/gdutxb.220010
Previous Articles Next Articles
Zhu Qing-hua, Lu An-bang, Zhou Jian-tie, Hou Yan
CLC Number:
[1] MAHMOODI S E, UMA R N, SUBBALAKSHMI K P. Optimal joint scheduling and cloud offloading for mobile applications [J]. IEEE Transactions on Cloud Computing, 2019, 7(2): 301-313. [2] CHEN M, GUO S, LIU K, et al. Robust computation offloading and resource scheduling in cloudlet-based mobile cloud computing [J]. IEEE Transactions on Mobile Computing, 2021, 20(5): 2025-2040. [3] SATYANARAYANAN M, BAHL P, CACERES R, et al. The case for VM-based cloudlets in mobile computing [J]. IEEE Pervasive Computing, 2009, 8(4): 14-23. [4] MACH P, BECVAR Z. Mobile edge computing: a survey on architecture and computation offloading [J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628-1656. [5] XU Y, GU B, HU R Q, et al. Joint computation offloading and radio resource allocation in MEC-based wireless-powered backscatter communication networks [J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6200-6205. [6] MUKHERJEE A, DE D, ROY D G. A power and latency aware cloudlet selection strategy for multi-cloudlet environment [J]. IEEE Transactions on Cloud Computing, 2019, 7(1): 141-154. [7] BI J, YUAN H, DUANMU S, et al. Energy-optimized partial computation offloading in mobile-edge computing with genetic simulated-annealing-based particle swarm optimization [J]. IEEE Internet of Things Journal, 2021, 8(5): 3774-3785. [8] BOZORGCHENANI A, MASHHADI F, TARCHI D, et al. Multi-objective computation sharing in energy and delay constrained mobile edge computing environments [J]. IEEE Transactions on Mobile Computing, 2021, 20(10): 2992-3005. [9] LI H, XU H, ZHOU C, et al. Joint optimization strategy of computation offloading and resource allocation in multi-access edge computing environment [J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 10214-10226. [10] MAO Y, ZHANG J, LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices [J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3590-3605. [11] CHEN Y, ZHANG N, ZHANG Y, et al. Energy efficient dynamic offloading in mobile edge computing for internet of things [J]. IEEE Transactions on Cloud Computing, 2021, 9(3): 1050-1060. [12] CHEN X, JIAO L, LI W, et al. Efficient multi-user computation offloading for mobile-edge cloud computing [J]. IEEE/ACM Transactions on Networking, 2015, 24(5): 2795-2808. [13] MAZOUZI H, ACHIR N, BOUSSETTA K. Dm2-ecop: an efficient computation offloading policy for multi-user multi-cloudlet mobile edge computing environment [J]. ACM Transactions on Internet Technology (TOIT), 2019, 19(2): 1-24. [14] DINH T Q, TANG J, LA Q D, et al. Offloading in mobile edge computing: task allocation and computational frequency scaling [J]. IEEE Transactions on Communications, 2017, 65(8): 3571-3584. [15] WU J, CAO Z, ZHANG Y, et al. Edge-cloud collaborative computation offloading model based on improved partical swarm optimization in MEC[C]//IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS). TianJin: IEEE, 2019: 959-962. [16] HUANG L, FENG X, ZHANG L, et al. Multi-server multi-user multi-task computation offloading for mobile edge computing networks [J]. Sensors, 2019, 19(6): 1446. [17] CHEN M H, LIANG B, DONG M. Joint offloading decision and resource allocation for multi-user multi-task mobile cloud[C]//2016 IEEE International Conference on Communications (ICC). Kuala Lumpur: IEEE, 2016: 1-6. [18] 杨天, 杨军. 移动边缘计算中的卸载决策与资源分配策略[J]. 计算机工程, 2021, 47(2): 19-25. YANG T, YANG J. Offloading decision and resource allocation strategy in mobile edge computing [J]. Computer Engineering, 2021, 47(2): 19-25. [19] DEB K, AGRAWAL R B. Simulated binary crossover for continuous search space [J]. Complex Systems, 1995, 9(2): 115-148. [20] DEB K, GOYAL M. A combined genetic adaptive search (GeneAS) for engineering design [J]. Computer Science and Informatics, 1996, 26(4): 30-45. [21] KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of International Conference on Neural Networks (ICNN'95). Perth: IEEE, 1995, 4: 1942-1948. [22] YANG X S, DEB S. Cuckoo search via Lévy flights[C]//2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). Coimbatore: IEEE, 2009: 210-214. [23] PARSOPOULOS K E, VRAHATIS M N. Particle swarm optimization method for constrained optimization problems [J]. Intelligent Technologies–Theory and Application:New Trends in Intelligent Technologies, 2002, 76(1): 214-220. [24] ZHANG C, LIU Z, GU B, et al. A deep reinforcement learning based approach for cost- and energy-aware multi-flow mobile data offloading [J]. IEICE Transactions on Communications, 2018, E101.B(7): 1625-1634. |
[1] | Wang Feng, Li Yu-long, Lin Zhi-fei, Cui Miao, Zhang Guang-chi. An Online Resource Allocation Design for Computation Capacity Maximization in Energy Harvesting Mobile Edge Computing Systems [J]. Journal of Guangdong University of Technology, 2022, 39(04): 17-23. |
[2] | LIU Zhu-Song, CHEN Jie, TIAN Long. Task Scheduling Algorithm Based on Improved Cuckoo Search Algorithm in Cloud Computing Environment [J]. Journal of Guangdong University of Technology, 2016, 33(03): 32-36. |
|