Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (04): 67-76.doi: 10.12052/gdutxb.220139
• Computer Science and Technology • Previous Articles Next Articles
Cao Zhi-xiong1, Wu Xiao-ling1, Luo Xiao-wei2, Ling Jie1
CLC Number:
[1] 郭师虹, 井锦瑞, 张潇丹, 等. 基于改进的YOLOv4安全帽佩戴检测研究[J]. 中国安全生产科学技术, 2021, 17(12): 135-141.GUO S H, JING J R, ZHANG X D, et al. Researchon detection of safety helmet wearing basedon improved YOLOv4[J]. China Safety Production Science and Technology, 2021, 17(12): 135-141. [2] 岳诗琴, 张乾, 邵定琴, 等. 基于ResNet50-SSD的安全帽佩戴状态检测研究[J]. 长江信息通信, 2021, 34(3): 86-89.YUE S Q, ZHANG Q, SHAO D Q, et al. Safety helmat wearing status detection study based on ResNet50-SSD[J]. Yangtze River Information and Communication, 2021, 34(3): 86-89. [3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// CVPR 2014: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. [4] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149. [5] REDMON J, DIVVALA S, GiIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. [6] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// IEEE Conference on Computer Vision & Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. [7] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2021-12-21].https://arxiv.org/pdf/1804.02767.pdf. [8] BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2021-12-21].https://arxiv.org/pdf/2004.10934.pdf. [9] 林俊, 党伟超, 潘理虎, 等. 基于YOLO的安全帽检测方法[J]. 计算机系统应用, 2019, 28(9): 174-179.LIN J, DANG W C, PAN L H, et al. Safety helmet detection based on YOLO[J]. Computer System Applications, 2019, 28(9): 174-179. [10] 方明, 孙腾腾, 邵桢. 基于改进YOLOv2的快速安全帽佩戴情况检测[J]. 光学精密工程, 2019, 27(5): 1196-1205.FANG M, SUN T T, SHAO Z. Fast helmet-wearing-condition detection based onimproved YOLOv2[J]. Optical Precision Engineering, 2019, 27(5): 1196-1205. [11] CHENG R, HE X W, ZHENG Z L, et al. Multi-scale safety helmet detection based on SAS-YOLOv3-Tiny[J]. Applied Sciences, 2021, 11(8): 3652. [12] CHEN W, LIU M, ZHOU X, et al. Safety helmet wearing detection in aerial images using improved YOLOv4[J]. Computers, Materials, Continua, 2022(8): 16. [13] 黄志强, 李军. 基于空间通道注意力机制与多尺度融合的交通标志识别研究[J]. 南京邮电大学学报(自然科学版), 2022, 42(2): 93-102.HUANG Z Q, LI J. Research on traffic sign recognition based on spatial channel attention mechanism and multi-scale fusion[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2022, 42(2): 93-102. [14] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV). Munich: Springer, 2018: 3-19. [15] JIE H, LI S, GANG S, et al. Squeeze-and-excitation networks[EB/OL]. (2019-05-16)[2021-12-21].https://arxiv.org/abs/1709.01507. [16] YING X, WANG Y, WANG L, et al. A stereo attention module for stereo image super-resolution[J]. IEEE Signal Processing Letters, 2020, 27(99): 496-500. [17] ZHENG Z, WANG P, LIU W, et al. Distance-IoU Loss: faster and better learning for bounding box regression[EB/OL]. (2019-11-19)[2021-12-21]. https://arxiv.org/abs/1911.08287. [18] ZHANG D, WU W, CHENG H, et al. Image-to-video person re-identification with temporally memorized similarity learning[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2018, 28(10): 2622-2632. |
[1] | Zhang Yu, Liu Bo. Research on Inductive Transfer Learning Model Based on Self-paced Learning Strategy [J]. Journal of Guangdong University of Technology, 2023, 40(04): 31-36. |
|