Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (04): 60-66,93.doi: 10.12052/gdutxb.220161
• Computer Science and Technology • Previous Articles Next Articles
Chen Xiao-rong, Yang Xue-rong, Cheng Si-yuan, Liu Guo-dong
CLC Number:
[1] 王大为, 罗悦齐. 纯电动汽车发展面临的问题[J]. 汽车文摘, 2019(8): 22-31.WANG D W, LUO Y Q. Problems faced by electric vehicles[J]. Automotive Digest, 2019(8): 22-31. [2] 汤勃, 孔建益, 伍世虔. 机器视觉表面缺陷检测综述[J]. 中国图象图形报, 2017, 22(12): 1640-1663.TANG B, KONG J Y, WU S Q. Review of surface defect detection based on machine vision[J]. Journal of Image and Graphics, 2017, 22(12): 1640-1663. [3] 谢永杰, 智贺宁. 基于机器视觉的图像识别技术研究综述[J]. 科学技术创新, 2018(7): 74-75 [4] 吴凯, 杨新志. 浅述人工智能的深度学习[J]. 石河子科技, 2020(6): 44-45 [5] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):. 84-90. [6] 周佳禾, 宫元九. 利用卷积神经网络检测锂电池电极缺陷[J]. 电子测量技术, 2019, 42(19): 182-186.ZHOU J H, GONG Y J, Detection of electrode defects in lithium batteries based on convolutional neural networks[J]. Electronic Measurement Technology, 2019, 42(19): 182-186. [7] 周佳禾, 宫临凡, 王盛瑶. 方形卷绕式锂电池电极褶皱检测方法研究[J]. 仪表技术与传感器, 2021(5): 107-111.ZHOU J H, GONG L F, WANG S Y. Research on detection of electrode fold of spirally wound flattened lithium batteries[J]. Instrument Technique and Sensor, 2021(5): 107-111. [8] 黄梦涛, 连一鑫. 基于改进Canny算子的锂电池极片表面缺陷检测[J]. 仪器仪表学报, 2021, 42(10): 199-209.HUANG M T, LIAN Y X. Lithium battery electrode plate surface defect detection based on improved Canny operator[J]. Chinese Journal of Scientific Instrument, 2021, 42(10): 199-209. [9] 张旭. 基于深度卷积神经网络的铝材表面缺陷检测[D]. 上海: 华东理工大学, 2020. [10] 章云, 王晓东. 基于受限样本的深度学习综述与思考[J]. 广东工业大学学报, 2022, 39(5): 1-8.ZHANG Y, WANG X D. A review and thinking of deep learning with a restricted number of samples[J]. Journal of Guangdong University of Technology, 2022, 39(5): 1-8. [11] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Fleet D. European Conference on Computer Vision. Cham: Springer, 2014: 818-833. [12] SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C]//The IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520. [13] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [14] 黄剑航, 王振友. 基于特征融合的深度学习目标检测算法研究[J]. 广东工业大学学报, 2021, 38(4): 52-58.HUANG J H, WANG Z Y. A research on deep learning object detection algorithm based on feature fusion.[J]. Journal of Guangdong University of Technology, 2021, 38(4): 52-58. [15] DENG J, DONG W, SOCHER R, et al. Imagenet: a large-scale hierarchical image database[C]//2009 IEEE Conference On Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009: 248-255. |
[1] | Lai Dong-sheng, Feng Kai-ping, Luo Li-hong. Facial Expression Recognition Based on Multi-feature Fusion [J]. Journal of Guangdong University of Technology, 2023, 40(03): 10-16. |
[2] | Xie Guo-bo, Lin Li, Lin Zhi-yi, He Di-xuan, Wen Gang. An Insulator Burst Defect Detection Method Based on YOLOv4-MP [J]. Journal of Guangdong University of Technology, 2023, 40(02): 15-21. |
[3] | Huang Jian-hang, Wang Zhen-you. A Research on Deep Learning Object Detection Algorithm Based on Feature Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(04): 52-58. |
[4] | Gao Jun-yan, Liu Wen-yin, Yang Zhen-guo. Object Tracking Combined with Attention and Feature Fusion [J]. Journal of Guangdong University of Technology, 2019, 36(04): 18-23. |
[5] | Li Gang,Wang Renhuang, Li Pei. Detection of Defects in Process Balls Based on BP Neural Network [J]. Journal of Guangdong University of Technology, 2012, 29(1): 46-49. |
[6] | ZOU Qing-Sheng, WANG Ren-Huang, MING Jun-Feng. Design of Multi-parameter Classifying System in Ceramic Tiles Based on M achine Vision [J]. Journal of Guangdong University of Technology, 2010, 27(4): 46-49. |
|