Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (05): 41-46.doi: 10.12052/gdutxb.220197
• Computer Science and Technology • Previous Articles Next Articles
Zheng Yu1, Cai Nian1, Ouyang Wen-sheng1, Xie Yi-ying1, Wang Ping2
CLC Number:
[1] PEREIRA-LIMA J C, JAKOBS R, WINTER U H, et al. Long-term results (7 to 10 years) of endoscopic papillotomy for choledocholithiasis. Multivariate analysis of prognostic factors for the recurrence of biliary symptoms [J]. Gastrointestinal Endoscopy, 1998, 48(5): 457-464. [2] UENO N, OZAWA Y, AIZAWA T. Prognostic factors for recurrence of bile duct stones after endoscopic treatment by sphincter dilation [J]. Gastrointestinal Endoscopy, 2003, 58(3): 336-340. [3] 李江, 刘斌. 肝胆管结石初始外科治疗的规范化研究[J]. 临床肝胆病杂志, 2015, 31(10): 1612-1614. LI J, LIU B. More attention to initial surgical treatment of hepatolithiasis [J]. Journal of Clinical Hepatol, 2015, 31(10): 1612-1614. [4] 王平, 刘成成, 陶海粟, 等. 经皮肝Ⅰ期胆道造瘘取石治疗有胆道手术史患者的肝内胆管结石[J]. 中华肝胆外科杂志, 2019, 25(2): 106-110. WANG P, LIU C C, TAO H S, et al. Percutaneous transhepatic one-step biliary fistulation for patients with hepatolithiasis and hepatobiliary surgery history [J]. Chinese Journal of Hepatobiliary Surgery, 2019, 25(2): 106-110. [5] NAKAGAWA Y, ROSENFELD A. Some experiments on variable thresholding [J]. Pattern Recognition, 1979, 11(3): 191-204. [6] MORE M D, ANDURKAR G K. Edge detection techniques: a comparative approach [J]. World Journal of Science and Technology, 2012, 2(4): 142-145. [7] ZENG Y, LIAO S, TANG P, et al. Automatic liver vessel segmentation using 3D region growing and hybrid active contour model [J]. Computers in Biology and Medicine, 2018, 97: 63-73. [8] SHEN D, WU G, SUK H I. Deep learning in medical image analysis [J]. Annual Review of Biomedical Engineering, 2017, 19(5): 221-248. [9] FU X, CAI N, HUANG K, et al. M-net: a novel U-net with multi-stream feature fusion and multi-scale dilated convolutions for bile ducts and hepatolith segmentation [J]. IEEE Access, 2019, 7: 148645-148657. [10] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention. Munich: MICCAI, 2015: 234-241. [11] 陈芝涛. 基于多尺度上下文特征学习的胆管及胆结石图像分割[J]. 现代计算机, 2021, 27(25): 74-78. CHEN Z T. Bile ducts and hepatoliths segmentation via multi-scale context feature learning [J]. Modern Computer, 2021, 27(25): 74-78. [12] KITRUNGROTSAKUL T, HAN X H, IWAMOTO Y, et al. VesselNet: a deep convolutional neural network with multi pathways for robust hepatic vessel segmentation [J]. Computerized Medical Imaging and Graphics, 2019, 75: 74-83. [13] YAN Q, WANG B, ZHANG W, et al. Attention-guided deep neural network with multi-scale feature fusion for liver vessel segmentation [J]. IEEE Journal of Biomedical and Health Informatics, 2020, 25(7): 2629-2642. [14] SU J, LIU Z, ZHANG J, et al. DV-Net: accurate liver vessel segmentation via dense connection model with D-BCE loss function [J]. Knowledge-Based Systems, 2021, 232: 107471. [15] HAO W, ZHANG J, SU J, et al. HPM-Net: hierarchical progressive multiscale network for liver vessel segmentation in CT images [J]. Computer Methods and Programs in Biomedicine, 2022, 224: 107003. [16] 杨柳, 李德玉, 何爱军, 等. 医学图像多维重建中的插值问题研究进展[J]. 生物医学工程学杂志, 2003(4): 728-732. YANG L, LI D Y, HE A J, et al. A review of interpolation in multi-dimensional reconstruction of medical images [J]. Journal of Biomedical Engineering, 2003(4): 728-732. [17] 闫芳. 医学影像重建算法研究及应用[D]. 济南: 山东师范大学, 2021. [18] NIKLAUS S, MAI L, LIU F. Video frame interpolation via adaptive separable convolution[C]//IEEE/CVF International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 261-270. [19] JIANG H, SUN D, JAMPANI V, et al. Super slomo: high quality estimation of multiple intermediate frames for video interpolation[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 9000-9008. [20] LU L, WU R, LIN H, et al. Video frame interpolation with transformer[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 3532-3542. [21] LUO Y, PAN J, TANG J. Bi-directional pseudo-three-dimensional network for video frame interpolation [J]. IEEE Transactions on Image Processing, 2022, 31: 6773-6788. [22] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention u-net: learning where to look for the pancreas[EB/OL]. (2018-05-20) [2022-12-26].https://doi.org/10.48550/arXiv.1804.03999. [23] ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. Unet++: redesigning skip connections to exploit multiscale features in image segmentation [J]. IEEE Transactions on Medical Imaging, 2019, 39(6): 1856-1867. [24] CAO H, WANG Y, CHEN J, et al. Swin-unet: unet-like pure transformer for medical image segmentation[EB/OL]. (2021-05-12) [2022-12-26]. https://doi.org/10.48550/arXiv.2105.05537. |
[1] | Gan Meng-kun, Zeng An, Zhang Xiao-bo. Aortic Re-coarctation Prediction Research Based on Swin-Unet [J]. Journal of Guangdong University of Technology, 2023, 40(05): 34-40. |
[2] | Wu Zhen-hua, Tang Wen-yan, Lyu Wen-ge, Chen Ru-jie, Hou Meng-hua, Li De-yuan. Fast Image Segmentation with Multilevel Threshold of Two-dimensional Entropy Based on ISSA and Integral Graph [J]. Journal of Guangdong University of Technology, 2023, 40(05): 47-55. |
[3] | Li Yang, Zhou Ying. Differential Privacy Trajectory Data Publishing Based on Orientation Control [J]. Journal of Guangdong University of Technology, 2023, 40(05): 56-63. |
[4] | Liang Yu-chen, Cai Nian, Ouyang Wen-sheng, Xie Yi-ying, Wang Ping. CT Diagnosis of Chronic Obstructive Pulmonary Disease Based on Slice Correlation Information [J]. Journal of Guangdong University of Technology, 0, (): 2-7. |
[5] | Dai Bin, Zeng Bi, Wei Peng-fei, Huang Yong-jian. A Task-oriented Dialogue Policy Learning Method of Improved Discriminative Deep Dyna-Q [J]. Journal of Guangdong University of Technology, 2023, 40(04): 9-17,23. |
[6] | Zhong Geng-jun, Li Dong. A Channel-splited Based Dual-branch Block for 3D Point Cloud Processing [J]. Journal of Guangdong University of Technology, 2023, 40(04): 18-23. |
[7] | Zhang Jia-yue, Zhang Ling. Knowledge Distillation Method Based on Incremental Class Activation Knowledge [J]. Journal of Guangdong University of Technology, 2023, 40(04): 24-30,36. |
[8] | Wu Ya-di, Chen Ping-hua. A Music Recommendation Model Based on Users' Long and Short Term Preferences and Music Emotional Attention [J]. Journal of Guangdong University of Technology, 2023, 40(04): 37-44. |
[9] | Lin Zhe-huang, Li Dong. Semantics-guided Adaptive Topology Inference Graph Convolutional Networks for Skeleton-based Action Recognition [J]. Journal of Guangdong University of Technology, 2023, 40(04): 45-52. |
[10] | Huang Xiao-yong, Li Wei-tong. Fall Detection Algorithm Based on TSSI and STB-CNN [J]. Journal of Guangdong University of Technology, 2023, 40(04): 53-59. |
[11] | Chen Xiao-rong, Yang Xue-rong, Cheng Si-yuan, Liu Guo-dong. Surface Defect Detection of Lithium Battery Electrodes Based on Improved Unet Network [J]. Journal of Guangdong University of Technology, 2023, 40(04): 60-66,93. |
[12] | Cao Zhi-xiong, Wu Xiao-ling, Luo Xiao-wei, Ling Jie. Helmet Wearing Detection Algorithm Intergrating Transfer Learning and YOLOv5 [J]. Journal of Guangdong University of Technology, 2023, 40(04): 67-76. |
[13] | Lai Dong-sheng, Feng Kai-ping, Luo Li-hong. Facial Expression Recognition Based on Multi-feature Fusion [J]. Journal of Guangdong University of Technology, 2023, 40(03): 10-16. |
[14] | Xie Guo-bo, Lin Li, Lin Zhi-yi, He Di-xuan, Wen Gang. An Insulator Burst Defect Detection Method Based on YOLOv4-MP [J]. Journal of Guangdong University of Technology, 2023, 40(02): 15-21. |
[15] | Chen Jing-yu, Lyu Yi. Frost Detection Method of Cold Chain Refrigerating Machine Based on Spiking Neural Network [J]. Journal of Guangdong University of Technology, 2023, 40(01): 29-38. |
|