Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (03): 10-16.doi: 10.12052/gdutxb.210179
Previous Articles Next Articles
Lai Dong-sheng1, Feng Kai-ping2, Luo Li-hong2
CLC Number:
[1] SHI D, TANG H. Face recognition algorithm based on self-adaptive blocking local binary pattern [J]. Multimedia Tools and Applications, 2021, 80: 23899-23921. [2] YAO A, CAI D, HU P, et al. HoloNet: towards robust emotion recognition in the wild[C]// Proceedings of the 18th ACM International Conference on Multimodal Interaction. Tokyo: Association for Computing Machinary, 2016: 472-478. [3] DING H, ZHOU P, CHELLAPPA R. Occlusion-adaptive deep network for robust facial expression recognition[C]// IEEE International Joint Conference on Biometrics. Houston: IEEE, 2020: 1-9. [4] FAN Y, LAM J, LI V. Multi-ensemble convolutional neural network for facial expression recognition[C]// International Conference on Artificial Neural Networks. Rhodes: Springer International Publishing, 2018: 84-94. [5] WANG K, PENG X, YANG J, et al. Region attention networks for pose and occlusion robust facial expression recognition [J]. IEEE Transactions on Image Processing, 2020, 29: 4057-4069. [6] WANG K, CHEN J, ZHANG X, et al. Facial expression recognition based on deep convolutional neural network[C]// IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems. Tianjin: IEEE, 2018: 629-634. [7] MA Y, WANG X, WEI L. Multi-level spatial and semantic enhancement network for expression recognition [J]. Applied Intelligence, 2021, 51: 1-14. [8] LI J, JIN K, ZHOU D, et al. Attention mechanism-based CNN for facial expression recognition [J]. Neurocomputing, 2020, 411: 340-350. [9] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141. [10] CHEN S, LIU Y, GAO X, et al. Mobile Face Nets: efficient cnns for accurate real-time face verification on mobile devices[C]// Biometric Recognition. Urumqi: Springer International Publishing, 2018: 428-438. [11] 徐琳琳, 张树美, 赵俊莉. 构建并行卷积神经网络的表情识别算法[J]. 中国图像图形学报, 2019, 24(2): 227-236. XU L L, ZHANG S M, ZHAO J L. Expression recognition algorithm for parallel convolutional neural networks [J]. Journal of Image and Graphics, 2019, 24(2): 227-236. [12] MOLLAHOSSEINI A, CHAN D, MAHOOR M H. Going deeper in facial expression recognition using deep neural networks[C]// 2016 IEEE Winter Conference on Applications of Computer Vision. Lake Placid: IEEE, 2016: 1-10. [13] JEON J, PARK J C, JO Y J, et al. A real-time facial expression recognizer using deep neural network[C]// Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication. Danang: Association for Computing Machinery, 2016: 1-4. [14] SANG D V, DAT N V, THUAN D P. Facial expression recognition using deep convolutional neural networks[C]// 9th International Conference on Knowledge and Systems Engineering. Hue: IEEE, 2017: 130-135. [15] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient cnn architecture design[C]// Proceedings of the European Conference on Computer Vision. Munich: Springer International Publishing, 2018: 116-131. [16] 何志超, 赵龙章, 陈闯. 用于人脸表情识别的多分辨率特征融合卷积神经网络[J]. 激光与光电子学进展, 2018, 55(7): 370-375. HE Z C, ZHAO L Z, CHEN C. Convolution neural network with multi-resolution feature fusion for facial expression recognition [J]. Laser & Optoelectronics Progress, 2018, 55(7): 370-375. [17] QIAN Z, MU J, ZHANG J, et al. Facial expression recognition based on sas-net attention mechanism[C]// International Conference on Computer Network, Electronic and Automation. Xian: IEEE, 2021: 159-163. |
[1] | Lai Zhi-mao, Zhang Yun, Li Dong. A Survey of Deepfake Detection Techniques Based on Transformer [J]. Journal of Guangdong University of Technology, 2023, 40(06): 155-167. |
[2] | Zeng An, Chen Xu-zhou, Ji Yu-Zhu, Pan Dan, Xu Xiao-Wei. Cardiac Multiclass Segmentation Method Based on Self-attention and 3D Convolution [J]. Journal of Guangdong University of Technology, 2023, 40(06): 168-175. |
[3] | Wu Jun-xian, He Yuan-lie. Channel Attentive Self-supervised Network for Monocular Depth Estimation [J]. Journal of Guangdong University of Technology, 2023, 40(02): 22-29. |
[4] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9. |
[5] | Teng Shao-hua, Dong Pu, Zhang Wei. An Attention Text Summarization Model Based on Syntactic Structure Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(03): 1-8. |
[6] | Liang Guan-shu, Cao Jiang-zhong, Dai Qing-yun, Huang Yun-fei. An Unsupervised Trademark Retrieval Method Based on Attention Mechanism [J]. Journal of Guangdong University of Technology, 2020, 37(06): 41-49. |
[7] | Zeng Bi-qing, Han Xu-li, Wang Sheng-yu, Xu Ru-yang, Zhou Wu. Sentiment Classification Based on Double Attention Convolutional Neural Network Model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 10-17. |
[8] | Gao Jun-yan, Liu Wen-yin, Yang Zhen-guo. Object Tracking Combined with Attention and Feature Fusion [J]. Journal of Guangdong University of Technology, 2019, 36(04): 18-23. |
|