Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (03): 18-28.doi: 10.12052/gdutxb.230118
• Materials Science and Technology • Previous Articles Next Articles
Wang Xin-ying, Chen Li, Zhang Jia-cheng, Yu Yao-jiang, Wang Yi, Li Yun-yong
CLC Number:
[1] SONG X Q, TIAN D, QIU Y, et al. Accelerating sulfur redox reactions by topological insulator Bi2Te3 for high-performance Li-S batteries [J]. Advanced Functional Materials, 2022, 32(9): 2109413. [2] PANG Q, LIANG X, KWOK C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes [J]. Nature Energy, 2016, 1(9): 16132. [3] PENG H J, HUANG J Q, CHENG X B, et al. Review on high-loading and high-energy lithium-sulfur batteries [J]. Advanced Energy Materials, 2017, 7(24): 1700260. [4] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices [J]. Science, 2011, 334(6058): 928. [5] WANG W, HUAI L Y, WU S Y, et al. Ultrahigh-volumetric-energy-density lithium-sulfur batteries with lean electrolyte enabled by cobalt-doped MoSe2/Ti3C2T x MXene bifunctional catalyst [J]. ACS Nano, 2021, 15(7): 11619-11633. [6] BHARGAV A, HE J R, GUPTA A, et al. Lithium-sulfur batteries: attaining the critical metrics [J]. Joule, 2020, 4(2): 285. [7] LIU Y P, MA S Y, LIU L F, et al. Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S batteries [J]. Advanced Functional Materials, 2020, 30(32): 2002462. [8] YAN Y, ZHANG P, QU Z H, et al. Carbon/sulfur aerogel with adequate mesoporous channels as robust polysulfide confinement matrix for highly stable lithium-sulfur battery [J]. Nano Letters, 2020, 20(10): 7662-7669. [9] ZHOU L, DANILOV D L, EICHEL R, et al. Host materials anchoring polysulfides in Li-S batteries reviewed [J]. Advanced Energy Materials, 2021, 11(15): 2001304. [10] LI G X, SUN J h, HOU W P, et al. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries [J]. Nature Communications, 2016, 7(1): 10601. [11] ZHANG M, CHEN W, XUE L X, et al. Adsorption-catalysis design in the lithium-sulfur battery [J]. Advanced Energy Materials, 2020, 10(2): 1903008. [12] SHAN J W, WANG W, ZHANG B, et al. Unraveling the atomic-level manipulation mechanism of Li2S redox kinetics via electron-donor doping for designing high-volumetric-energy-density, lean-electrolyte lithium-sulfur batteries [J]. Advance Science, 2022, 9(33): 2204192. [13] CHEN Y, WANG T Y, TIAN H J, et al. Advances in lithium-sulfur batteries: from academic research to commercial viability [J]. Advanced Materials, 2021, 33(29): 2003666. [14] ZHOU W L, WANG X Y, SHAN J W, et al. Engineering hollow core-shell hetero-structure box to induce interfacial charge modulation for promoting bidirectional sulfur conversion in lithium-sulfur batteries [J]. Journal of Energy Chemistry, 2023, 80(5): 128-139. [15] CHEN L, YUE L G, WANG X Y, et al. Synergistically accelerating adsorption-electrocatalysis of sulfur species via interfacial built-in electric field of SnS2-MXene mott-schottky heterojunction in Li-S batteries [J]. Small, 2023, 19(15): 2206462. [16] LI Y P, LEI D, JIANG T Y, et al. P-doped Co9S8 nanoparticles embedded on 3D spongy carbon-sheets as electrochemical catalyst for lithium-sulfur batteries [J]. Chemical Engineering Journal, 2021, 426(52): 131798. [17] WANG W, WANG X Y, CHEN L, et al. Conductive metal-metal phase and built-in electric field of 1T-VSe2-MXene hetero-structure to accelerate dual-directional sulfur conversion for high-performance Li-S batteries [J]. Chemical Engineering Journal, 2023, 461: 142100. [18] ZHENG J Q, GUAN C H, LI H G, et al. VC@NCNTs: Bidirectional catalyst for fast charging lithium-sulfur batteries [J]. Chemical Engineering Journal, 2022, 442(1): 135940. [19] LI Y J, WANG W Y, ZHANG B, et al. Manipulating redox kinetics of sulfur species using mott-schottky electrocatalysts for advanced lithium-sulfur batteries [J]. Nano Letters, 2021, 21(15): 6656-6663. [20] LU D Z, WANG X Y, HU Y J, et al. Expediting stepwise sulfur conversion via spontaneous built-in electric field and binary sulfiphilic effect of conductive NbB2-MXene heterostructure in lithium-sulfur batteries [J]. Advanced Functional Materials, 2023, 33(15): 2212689. [21] WANG W, WANG X Y, SHAN J W, et al. Atomic-level design rules of metal-cation-doped catalysts: manipulating electron affinity/ionic radius of doped cations for accelerating sulfur redox kinetics in Li-S batteries [J]. Energy and Environmental Science, 2023, 16(6): 2669-2683. [22] 周俊粮, 赵振新, 武庭毅, 等. 多功能磷化铁碳布(FeP/CC) 中间层高效催化多硫化物实现锂硫电池的高容量与高稳定性[J]. 化学学报, 2023, 81(4): 351-358. ZHOU J L, ZHAO Z X, WU T Y, et al. Efficient catalytic conversion of polysulfides in multifunctional FeP/Carbon cloth interlayer for high capacity and stability of lithium-sulfur batteries [J]. Acta Chimica Sinica, 2023, 81(4): 351-358. [23] SHI N X, XI J, LIU J, et al. Dual-functional NbN ultrafine nanocrystals enabling kinetically boosted lithium-sulfur batteries [J]. Advanced Functional Materials, 2022, 32(17): 2111586. [24] ZHANG B, SHAN J W, WANG X Y, et al. Ru/Rh cation doping and oxygen-vacancy engineering of FeOOH nanoarrays@Ti3C2T x MXene heterojunction for highly efficient and stable electrocatalytic oxygen evolution [J]. Small, 2022, 18(25): 2200173. [25] VOIRY D, CHHOWALLA M, GOGOTS Y, et al. Best practices for reporting electrocatalytic performance of nanomaterials [J]. ACS Nano, 2018, 12(10): 9635-9638. [26] WU S Y, WANG W, SHAN J W, et al. Conductive 1T-VS2-MXene heterostructured bidirectional electrocatalyst enabling compact Li-S batteries with high volumetric and areal capacity [J]. Energy Storage Materials, 2022, 49: 153-163. |
[1] | Weng Jing-qia, Zhang Qi, Huang Shao-ming. Chemical Regulation of Microenvironment in Metal-organic Frameworks for Lithium-sulfur Batteries [J]. Journal of Guangdong University of Technology, 2023, 40(06): 75-87.doi: 10.12052/gdutxb.230118 |
|