Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (06): 75-87.doi: 10.12052/gdutxb.230123
• Catalytic and Energy Materials • Previous Articles Next Articles
Weng Jing-qia, Zhang Qi, Huang Shao-ming
CLC Number:
[1] WU M M, ZHOU Z, et al. Covalent organic frameworks as electrode materials for rechargeable metal-ion batteries [J]. Interdisciplinary Materials, 2023, 2(2): 231-259. [2] CHAYAMBUKA K, MULDER G, DANILOV D L, et al. From li-ion batteries toward Na-ion chemistries: challenges and opportunities [J]. Advanced Energy Materials, 2020, 10(38): 2001310. [3] XIAO Y B, GONG W, GUO S J, et al. Regulating coordination environment in metal-organic frameworks for adsorption and redox conversion of polysulfides in lithium-sulfur batteries [J]. ACS Materials Letters, 2021, 3(12): 1684-1694. [4] MENG R J, DU Q J, ZHONG N, et al. A tandem electrocatalysis of sulfur reduction by bimetal 2D MOFs [J]. Advanced Energy Materials, 2021, 11(47): 2102819. [5] ZENG Q H, LI X, GONG W, et al. Copolymerization of sulfur chains with vinyl functionalized metal-organic framework for accelerating redox kinetics in lithium-sulfur batteries [J]. Advanced Energy Materials, 2022, 12(21): 2104074. [6] LIANG J, SUN Z H, LI F, et al. Carbon materials for Li-S batteries: Functional evolution and performance improvement [J]. Energy Storage Materials, 2016, 2: 76-106. [7] DU M, LI Q, ZHANG G, et al. Metal-organic framework-based sulfur-loaded materials [J]. Energy & Environmental Materials, 2022, 5(1): 215-230. [8] NI L B, ZHAO G J, YANG G, et al. Dual core-shell-structured S@ C@ MnO2 nanocomposite for highly stable lithium-sulfur batteries [J]. ACS Applied Materials & Interfaces, 2017, 9(40): 34793-34803. [9] LEI T Y, CHEN W, HUANG J, et al. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries [J]. Advanced Energy Materials, 2017, 7(4): 1601843. [10] ZHENG Y, ZHENG S S, XUE H G, et al. Metal-organic frameworks for lithium-sulfur batteries [J]. Journal of Materials Chemistry A, 2019, 7(8): 3469-3491. [11] GENG P, WANG L, DU M, et al. MIL-96-Al for Li-S batteries: shape or size? [J]. Advanced Materials, 2022, 34(4): 2107836. [12] ZHOU M, J LI Y Y, LEI T Y, et al. Ion-inserted metal-organic frameworks accelerate the mass transfer kinetics in lithium-sulfur batteries [J]. Small, 2021, 17(44): 2104367. [13] CAPKOVÁ D, KAZDA T, ČECH O, et al. Influence of metal-organic framework MOF-76 (Gd) activation/carbonization on the cycle performance stability in Li-S battery [J]. Journal of Energy Storage, 2022, 51: 104419. [14] WANG Z Q, HUANG W Y, HUA J C, et al. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries [J]. Small Methods, 2020, 4(7): 2000082. [15] ZHANG L, HOU Y L. The rise and development of MOF-based materials for metal-chalcogen batteries: current status, challenges, and prospects[J]. Advanced Energy Materials, 2023, 13(20): 2204378. [16] QI C, XU L, WANG J, et al. Titanium-containing metal-organic framework modified separator for advanced lithium-sulfur batteries [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(34): 12968-12975. [17] BAI S Y, LIU X Z, ZHU K, et al. Metal-organic framework-based separator for lithium-sulfur batteries [J]. Nature Energy, 2016, 1(7): 1-6. [18] MANTHIRAM A, FU Y Z, SU Y S. Challenges and prospects of lithium-sulfur batteries [J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134. [19] MANTHIRAM A, FU Y Z, CHUNG S H, et al. Rechargeable lithium-sulfur batteries [J]. Chemical Reviews, 2014, 114(23): 11751-11787. [20] WANG D W, ZENG Q C, ZHOU G M, et al. Carbon-sulfur composites for Li-S batteries: status and prospects [J]. Journal of Materials Chemistry A, 2013, 1(33): 9382-9394. [21] FANG R P, ZHAO S Y, SUN Z H, et al. More reliable lithium-sulfur batteries: status, solutions and prospects [J]. Advanced Materials, 2017, 29(48): 1606823. [22] YAGHI O M, LI H L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels [J]. Journal of the American Chemical Society, 1995, 117(41): 10401-10402. [23] GUO S J, XIAO Y B, WANG J, et al. Ordered structure of interlayer constructed with metal-organic frameworks improves the performance of lithium-sulfur batteries[J]. Nano Research, 2021, 14(12): 4556-4562. [24] TIAN M, PEI F, YAO M S, et al. Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries [J]. Energy Storage Materials, 2019, 21: 14-21. [25] HONG X J, SONG C L, YANG Y, et al. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries [J]. ACS Nano, 2019, 13(2): 1923-1931. [26] ZHOU J W, LI R, FAN X X, et al. Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries [J]. Energy & Environmental Science, 2014, 7(8): 2715-2724. [27] YANG D W, LIANG Z F, TANG P Y, et al. A high conductivity 1d π-d conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium-sulfur batteries [J]. Advanced Materials, 2022, 34(10): 2108835. [28] HAN D D, WANG Z Y, PAN G L, et al. Metal-organic-framework-based gel polymer electrolyte with immobilized anions to stabilize a lithium anode for a quasi-solid-state lithium-sulfur battery [J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18427-18435. [29] CHIOCHAN P, YU X, SAWANGPHRUK M, et al. A metal organic framework derived solid electrolyte for lithium-sulfur batteries [J]. Advanced Energy Materials, 2020, 10(27): 2001285. [30] LIU B, TAHERI M, TORRES J F, et al. Janus conductive/insulating microporous ion-sieving membranes for stable Li-S batteries [J]. ACS Nano, 2020, 14(10): 13852-13864. [31] LI L, LUO Y, WANG Y, et al. Rational design of a well-aligned metal-organic framework nanopillar array for superior lithium-sulfur batteries [J]. Chemical Engineering Journal, 2023, 454: 140043. [32] WANG X, WANG Y, WU F, et al. Continuous zirconium-based MOF-808 membranes for polysulfide shuttle suppression in lithium-sulfur batteries [J]. Applied Surface Science, 2022, 596: 153628. [33] SU Y, WANG W, WANG W, et al. Cerium-based MOF as a separator coating for high-performance lithium-sulfur batteries [J]. Journal of The Electrochemical Society, 2022, 169(3): 030528. [34] ZHU Z, ZENG Y, PEI Z, et al. Bimetal-organic framework nanoboxes enable accelerated redox kinetics and polysulfide trapping for lithium-sulfur batteries [J]. Angewandte Chemie, 2023, 135(31): e202305828. [35] RANA M, AL-FAYAAD H A, LUO B, et al. Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries [J]. Nano Energy, 2020, 75: 105009. [36] LI X, ZHANG X, XU Y, et al. Metallic and dimensional optimization of metal-organic frameworks for high-performance lithium-sulfur batteries[J]. Chemistry: A European Journal, 2023, 29(31): e202300407. [37] CAPKOVÁ D, ALMÁŠI M, KAZDA T, et al. Metal-organic framework MIL-101 (Fe) -NH2 as an efficient host for sulphur storage in long-cycle Li-S batteries [J]. Electrochimica Acta, 2020, 354: 136640. [38] LI Y, LIN S, WANG D, et al. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium–sulfur batteries [J]. Advanced Materials, 2020, 32(8): 1906722. [39] LEE D H, AHN J H, PARK M S, et al. Metal-organic framework/carbon nanotube-coated polyethylene separator for improving the cycling performance of lithium-sulfur cells [J]. Electrochimica Acta, 2018, 283: 1291-1299. [40] LI J, JIAO C M, ZHU J H, et al. Hybrid co-based MOF nanoboxes/CNFs interlayer as microreactors for polysulfides-trapping in lithium-sulfur batteries [J]. Journal of Energy Chemistry, 2021, 57: 469-476. [41] SUNG S H, KIM B H, LEE S T, et al. Increasing sulfur utilization in lithium-sulfur batteries by a Co-MOF-74@ MWCNT interlayer [J]. Journal of Energy Chemistry, 2021, 60: 186-193. [42] XIAO Y B, XIANG Y C, GUO S J, et al. An ultralight electroconductive metal-organic framework membrane for multistep catalytic conversion and molecular sieving in lithium-sulfur batteries [J]. Energy Storage Materials, 2022, 51: 882-889. [43] FENG P, HOU W, BAI Z, et al. Ultrathin two-dimensional bimetal NiCo-based MOF nanosheets as ultralight interlayer in lithium-sulfur batteries [J]. Chinese Chemical Letters, 2023, 34(4): 107427. [44] GUO S J, XIAO Y B, CHEREVAN A, et al. Catalytic multivariable metal-organic frameworks for lithium-sulfur batteries [J]. Materials Today, 2023, 65: 37-46. [45] DANG B Y, GAO D Y, LUO Y H, et al. Bifunctional design of cerium-based metal-organic framework-808 membrane modified separator for polysulfide shuttling and dendrite growth inhibition in lithium-sulfur batteries [J]. Journal of Energy Storage, 2022, 52: 104981. [46] ZHENG J M, TIAN J, WU D X, et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries [J]. Nano Letters, 2014, 14(5): 2345-2352. [47] LI P R, MA L, WU T P, et al. Chemical immobilization and conversion of active polysulfides directly by copper current collector: a new approach to enabling stable room-temperature Li-S and Na-S batteries [J]. Advanced Energy Materials, 2018, 8(22): 1800624. [48] GENG P B, DU M, GUO X T, et al. Bimetallic metal-organic framework with high-adsorption capacity toward lithium polysulfides for lithium-sulfur batteries [J]. Energy & Environmental Materials, 2022, 5(2): 599-607. [49] LI W T, GUO X T, GENG P B, et al. Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li-S battery [J]. Advanced Materials, 2021, 33(45): 2105163. [50] ZENG Q H, XU L L, LI G X, et al. Integrating sub-nano catalysts into metal-organic framework toward pore-confined polysulfides conversion in lithium-sulfur batteries[J]. Advanced Functional Materials, 2023, 33(43): 2304619. [51] CAI D, LU M J, LI L, et al. A highly conductive MOF of graphene analogue Ni3 (HITP)2 as a sulfur host for high-performance lithium-sulfur batteries [J]. Small, 2019, 15(44): 1902605. [52] BAO W Z, ZHANG Z A, QU Y H, et al. Confine sulfur in mesoporous metal-organic framework@ reduced graphene oxide for lithium sulfur battery [J]. Journal of Alloys and Compounds, 2014, 582: 334-340. [53] HOU Y P, MAO H Z, XU L Q. et al. MIL-100 (V) and MIL-100 (V) /rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries [J]. Nano Research, 2017, 10: 344-353. [54] ZHANG H, ZHAO W Q, ZOU M C, et al. 3D, mutually embedded MOF@ carbon nanotube hybrid networks for high-performance lithium-sulfur batteries [J]. Advanced Energy Materials, 2018, 8(19): 1800013. [55] JIANG H Q, LIU X C, WU Y S, et al. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries [J]. Angewandte Chemie International Edition, 2018, 57(15): 3916-3921. [56] GENG P B, CAO S, GUO X T, et al. Polypyrrole coated hollow metal-organic framework composites for lithium-sulfur batteries [J]. Journal of Materials Chemistry A, 2019, 7(33): 19465-19470. [57] BAI S Y, ZHU K, WU S C, et al. A long-life lithium-sulphur battery by integrating zinc-organic framework based separator [J]. Journal of Materials Chemistry A, 2016, 4(43): 16812-16817. |
[1] | Wang Xin-ying, Chen Li, Zhang Jia-cheng, Yu Yao-jiang, Wang Yi, Li Yun-yong. Preparation of Vanadium-based Sulfide-MXene Hetero-Catalysts and Comparative Study of Catalytic Mechanism of Lithium-sulfur Batteries [J]. Journal of Guangdong University of Technology, 2024, 41(03): 18-28. |
[2] | Cao Yi-ting, Wang Qiao, Xu Ze-tao, Lyu Guan-heng. Research Progress of MOF/Bismuth-based Semiconductor Composites in Photocatalytic Technology [J]. Journal of Guangdong University of Technology, 2022, 39(04): 113-120. |
|