Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (06): 69-79.doi: 10.12052/gdutxb.240032
• Computer Science and Technology • Previous Articles
Hu Xiao-min, Wang Bing-hai, Huang Jia-wen, Gong Chao-fu, Li Min
CLC Number:
[1] JIN Y. A comprehensive survey of fitness approximation in evolutionary computation[J]. Soft Computing, 2005, 9(1): 3-12. [2] JIN Y. Surrogate-assisted evolutionary computation: recent advances and future challenges[J]. Swarm and Evolutionary Computation, 2011, 1(2): 61-70. [3] BOX G E P, DRAPER N R. Empirical model- building and response surfaces[M]. New York: John Wiley & Sons, 1987. [4] BROOMHEAD D S, LOWE D. Radial basis functions, multi-variable functional interpolation and adaptive networks[J]. Royal Signals and Radar Establishment Malvern, 1988: 1-34. [5] KRIGE D G. A statistical approach to some basic mine valuation problems on the witwatersrand[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6): 119-139. [6] ZURADA J. Introduction to artificial neural systems[M]. St. Paul: West Publishing Co. , 1992. [7] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20: 273-297. [8] LIM D, JIN Y, ONG Y S, et al. Generalizing surrogate-assisted evolutionary computation[J]. IEEE Transactions on Evolutionary Computation, 2009, 14(3): 329-355. [9] KNOWLES J. ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 50-66. [10] ZHANG Q, LIU W, TSANG E, et al. Expensive multiobjective optimization by MOEA/D with Gaussian process model[J]. IEEE Transactions on Evolutionary Computation, 2009, 14(3): 456-474. [11] SEAH C W, ONG Y S, TSANG I W, et al. Pareto rank learning in multi-objective evolutionary algorithms[C]//2012 IEEE Congress on Evolutionary Computation. Brisbane, QLD: IEEE, 2012: 1-8. [12] CHUGH T, JIN Y, MIETTINEN K, et al. A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(1): 129-142. [13] 蔡昕烨, 马中雨, 张峰, 等. 基于自适应分解的多任务协作型昂贵多目标优化算法[J]. 计算机学报, 2021, 44(9): 1934-1948. CAI X Y, MA Z Y, ZHANG F, et al. Adaptive multitask with multipopulation-based cooperative search for expensive multiobjective optimization problems[J]. Chinese Journal of Computers, 2021, 44(9): 1934-1948. [14] JIANG P, CHENG Y, YI J, et al. An efficient constrained global optimization algorithm with a clustering-assisted multiobjective infill criterion using Gaussian process regression for expensive problems[J]. Information Sciences, 2021, 569: 728-745. [15] 陈璟华, 邱明晋, 唐俊杰, 等. 基于改进差分进化和粒子群混合算法的电力系统最优潮流计算[J]. 广东工业大学学报, 2017, 34(5): 22-28. CHEN J H, QIU M J, TANG J J, et al. A hybrid algorithm based on improved differential evolution and particle swarm optimization for power system optimal power flow calculation[J]. Journal of Guangdong University of Technology, 2017, 34(5): 22-28 [16] GU Q, WANG Q, LI X, et al. A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems[J]. Knowledge-Based Systems, 2021, 223: 107049. [17] WANG H, JIN Y. A random forest-assisted evolutionary algorithm for data-driven constrained multiobjective combinatorial optimi-zation of trauma systems[J]. IEEE Transactions on Cybernetics, 2020, 50(2): 536-549. [18] CHUGH T, SINDHYA K, MIETTINEN K, et al. On constraint handling in surrogate-assisted evolutionary many-objective optimization[C]//Parallel Problem Solving from Nature-PPSN XIV: 14th International Conference. Edinburgh, UK: Springer International Publishing, 2016: 214-224. [19] YANG Q, CHEN W N, DENG J D, et al. A level-based learning swarm optimizer for large-scale optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(4): 578-594. [20] 胡晓敏, 龙祖涛, 李敏. 基于用户分层的多目标推荐算法[J]. 广东工业大学学报, 2023, 40(1): 10-18. HU X M, LONG Z T, LI M. A multi-objective recommendation algorithm based on user stratification[J]. Journal of Guangdong University of Technology, 2023, 40(1): 10-18. [21] CHENG R, JIN Y, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791. [22] CHENG R, JIN Y, NARUKAWA K, et al. A multiobjective evolutionary algorithm using gaussian process-based inverse modeling[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(6): 838-856. [23] WEI F F, CHEN W N, YANG Q, et al. A classifier-assisted level-based learning swarm optimizer for expensive optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(2): 219-233. [24] MA Z, WANG Y. Evolutionary constrained multiobjective optimization: test suite construction and performance comparisons[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(6): 972-986. [25] COELLO C A C, CORTéS N C. Solving multiobjective optimization problems using an artificial immune system[J]. Genetic Programming and Evolvable Machines, 2005, 6: 163-190. [26] DATTA R, REGIS R G. A surrogate-assisted evolution strategy for constrained multi-objective optimization[J]. Expert Systems with Applications, 2016, 57: 270-284. [27] TIAN Y, CHENG R, ZHANG X, et al. PlatEMO: a matlab platform for evolutionary multi-objective optimization[J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87. |
[1] | Tang Chao-lan, Xie Yi. A Multi-objective Optimization of Milling Parameters for 6061 Aluminum Alloy [J]. Journal of Guangdong University of Technology, 2020, 37(05): 87-93.doi: 10.12052/gdutxb.240032 |
[2] | Zhou Yi-lu, Wang Zhen-you, Li Ye-zi, Li Feng. A Quadratic Scalarizing Function in MOEA/D and its Performance on Multi and Many-Objective Optimization [J]. Journal of Guangdong University of Technology, 2018, 35(04): 37-44.doi: 10.12052/gdutxb.240032 |
[3] | Tang Jun-jie, Chen Jing-hua, Qiu Ming-jin. Multi-objective Dispatch of Microgrid Based on Dynamic Fuzzy Chaotic Particle Swarm Algorithm [J]. Journal of Guangdong University of Technology, 2018, 35(03): 100-106.doi: 10.12052/gdutxb.240032 |
[4] | HUANG Mei-hua, WEN Jie-chang, HE Yong. An Improved Artificial Fish Swarm Algorithm for Multi-objective Knapsack Problem [J]. Journal of Guangdong University of Technology, 2016, 33(05): 44-48.doi: 10.12052/gdutxb.240032 |
[5] | XU Huan, WEN Jie-Chang. Application of Differential Evolution Algorithm in Optimizing the Logistics Distribution Vehicle Routing Problem [J]. Journal of Guangdong University of Technology, 2013, 30(4): 61-64.doi: 10.12052/gdutxb.240032 |
[6] | ZHANG Jin-Feng- , CHEN Wei-Li. Application of Multi-objective Evolutionary Algorithm in the Location of Logistics Distribution Centers [J]. Journal of Guangdong University of Technology, 2010, 27(4): 76-80.doi: 10.12052/gdutxb.240032 |
|