Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (06): 39-44.doi: 10.12052/gdutxb.240004
• Integrated Circuit Science and Engineering • Previous Articles
Lan Hao-yuan1, Cai Shu-ting2, Xiong Xiao-ming2, Wang Zhi-an3, Zhang Xiao-hui3, Wang Jian-ping3, Guo Jin-cai3, Li Jian-zhong3, Li Bin-hong3
CLC Number:
[1] WANG A, CHANDRAKASAN A. A 180 mV FFT processor using subthreshold circuit techniques[C]//2004 IEEE International Solid-State Circuits Conference. San Francisco: IEEE, 2004: 292-293. [2] HANSON S, ZHAI B, SEOK M, et al. Performance and variability optimization strategies in a sub-200 mV, 3.5 pJ/inst, 11 nW subthreshold processor[C]//2007 IEEE Symposium on VLSI Circuits. Kyoto: IEEE, 2007: 152-153. [3] BOL D, SCHRAMME M, MOREAU L, et al. Sleeprunner: a 28 nm FDSOI ULP cortex-M0 MCU with ULL SRAM and UFBR PVT compensation for 2.6–3.6 μW/DMIPS 40~80 MHz active mode and 131 nW/kB fully retentive deep-sleep mode [J]. IEEE Journal of Solid-State Circuits, 2021, 56(7): 2256-2269. [4] 赵晓松, 顾祥, 张庆东, 等. 全耗尽绝缘层上硅技术及生态环境简介[J]. 电子与封装, 2022, 22(6): 060501. ZHAO X S, GU X, ZHANG Q D, et al. Introduction to fully depleted silicon on insulator technology and its ecosystem [J]. Electronics & Packaging, 2022, 22(6): 060501. [5] MONFRAY S, SKOTNICKI T. UTBB FDSOI: Evolution and opportunities [J]. Solid-State Electronics, 2016, 125: 63-72. [6] MAGARSHACK P, FLATRESSE P, CESANA G. UTBB FD-SOI: a process/design symbiosis for breakthrough energy-efficiency[C]//2013 Design, Automation & Test in Europe Conference & Exhibition (DATE) . Grenoble: IEEE, 2013: 952-957. [7] GRENOUILLET L, CASTELLANI N, PERSICO A, et al. 16 kbit 1T1R OxRAM arrays embedded in 28 nm FDSOI technology demonstrating low BER, high endurance, and compatibility with core logic transistors[C]//2021 IEEE International Memory Workshop (IMW). Dresden: IEEE, 2021: 1-4. [8] ZHENG Q, CUI J, XU L, et al. Total Ionizing dose responses of forward body bias ultra-thin body and buried oxide FD-SOI transistors [J]. IEEE Transactions on Nuclear Science, 2019, 66(4): 702-709. [9] OVERWATER R W J, BABAIE M, SEBASTIANO F. Cryogenic-aware forward body biasing in bulk CMOS [J]. IEEE Electron Device Letters, 2023, 45(2): 152-155. [10] GE H, XIE T, REN Z, et al. Analysis of back-gate bias impact on 22 nm FDSOI SRAM cell [J]. Solid-State Electronics, 2022, 196: 108418. [11] KUODA T, FUJITA T, MITA S, et al. A 0.9 V 150 MHz 10 mW 4 mm2 2-D discrete cosine transform core processor with variable threshold-voltage (VT) Scheme [J]. IEEE Journal of Solid-State Circuits, 1996, 31(11): 1770-1779. [12] MIYAZAKI M, ONO G, ISHIBASHI K. A 1.2 GIPS/W microprocessor using speed-adaptive threshold-voltage CMOS with forward bias [J]. IEEE Journal of Solid-State Circuits, 2002, 37(2): 210-217. [13] BLAGOJEVIĆ M, COCHET M, KELLER B, et al. A fast, flexible, positive and negative adaptive body-bias generator in 28 nm FDSOI[C]//2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits) . Honolulu: IEEE, 2016: 1-2. [14] SUMITA M, SAKIYAMA S, KINOSHITA M, et al. Mixed body bias techniques with fixed Vt and Ids generation circuits [J]. IEEE Journal of Solid-State Circuits, 2005, 40(1): 60-66. [15] SIDDIQI A, JAIN N, RASHED M. Back-bias generator for post-fabrication threshold voltage tuning applications in 22 nm FD-SOI process[C]//2018 19th International Symposium on Quality Electronic Design (ISQED). Santa Clara: IEEE, 2018: 268-273. |
No related articles found! |
|