广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (05): 68-74.doi: 10.12052/gdutxb.200005

• 综合研究 • 上一篇    下一篇

十字交叉型微通道内液滴形成的数值模拟研究

罗钧午1, 李冬梅2, 梁帅2, 王帅超2, 肖曙红1   

  1. 1. 广东工业大学 机电工程学院,广东 广州 510006;
    2. 广东顺德创新设计研究院,广东 佛山 528300
  • 收稿日期:2019-12-31 出版日期:2020-09-17 发布日期:2020-09-17
  • 通信作者: 肖曙红(1968-),男,教授,主要研究方向为精密机械CAE技术、高效精密制造装备,E-mail:shxiao@gdut.edu.cn E-mail:shxiao@gdut.edu.cn
  • 作者简介:罗钧午(1988-),男,硕士研究生,主要研究方向为微流控液滴技术、多相流的仿真研究
  • 基金资助:
    国家自然科学基金资助项目(50975051)

A Research on Numerical Simulation of Droplet Generation in Crossing Microchannels

Luo Jun-wu1, Li Dong-mei2, Liang Shuai2, Wang Shuai-chao2, Xiao Shu-hong1   

  1. 1. School of Electromechanic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangdong Shunde Innovative Design Institute, Foshan 528300, China
  • Received:2019-12-31 Online:2020-09-17 Published:2020-09-17

摘要: 基于Fluent软件的流体体积分数(Fluid Volume Fraction,VOF)模型,针对十字交叉型微通道内液滴的形成过程开展了三维数值模拟研究,分别研究了连续相黏度、分散相黏度、两相界面张力系数、壁面接触角对液滴形成的影响,为实际应用提供参考。研究表明随着连续相流速的增加,液滴生成直径减少,生成频率增大;增加连续相黏度时,液滴生成直径变小,生成频率的变化则相反;当分散相黏度超过连续相黏度时,出现射流现象而不能生成液滴;液滴生成直径随两相界面张力系数的增加而增大,生成频率降低;增大壁面接触角有利于液滴的产生,且两相流速为0.01 m/s和0.02 m/s时,接触角应分别取到150°和120°才能正常生成液滴。

关键词: 十字交叉型, 流体体积分数(VOF), 数值模拟, 液滴, 两相流

Abstract: Based on the fluid volume fraction (VOF) model of Fluent software, the droplet generation process in crossing microchannel was investigated by three-dimensional numerical simulation study, and the influences of continuous phase viscosity, dispersed phase viscosity, two-phase interfacial tension and wall contact angle on droplet generation were researched respectively, providing reference for practical applications. The simulation results showed that the droplet size decreased and the generation frequency increased with the increasing flow velocity of continuous phase. When the continuous phase viscosity was increased, the droplet size would decrease and the generation frequency change was opposite. If the dispersed phase viscosity exceeded the continuous phase viscosity, the jet flow phenomenon would occur and the droplets could not be generated. With the increase of the interfacial tension coefficient of two phases, the droplet size would increase, and the formation frequency would decrease. Increasing wall contact angle is beneficial to droplet generation, and when the two-phase flow rate was 0.01 m/s and 0.02 m/s, the contact angle should be set to 150° and 120° respectively to generate droplets normally.

Key words: crossing type, fluid volume fraction (VOF), numerical simulation, droplet, two-phase flow

中图分类号: 

  • TH776
[1] 巩燕, 胡杰, 高彬, 等. 心血管疾病即时检测技术的研究进展[J]. 中国科学: 技术科学, 2016, 46(11): 1116-1134
GONG Y, HU J, GAO B, et al. Advances in real-time detection of cardiovascular diseases [J]. Science in China: Technical Science, 2016, 46(11): 1116-1134
[2] 林银银, 巫金波. 基于微流控技术的高通量材料合成、表征及测试平台[J]. 自然杂志, 2017, 39(2): 103-114
LIN Y Y, WU J B. High throughput material synthesis, characterization and testing platform based on microfluidic technology [J]. Chinese Journal of Nature, 2017, 39(2): 103-114
[3] 吴晶, 黄伶慧, 王远航, 等. 微流控芯片电泳在食品安全与环境污染检测中的应用[J]. 分析测试学报, 2015, 34(3): 283-288
WU J, HUANG L H, WANG Y H, et al. Application of microfluidic chip electrophoresis in food safety and environmental pollution detection [J]. Journal of Analytical Testing, 2015, 34(3): 283-288
[4] 高克鑫, 范一强, 金志明, 等. 微流控芯片在提高石油采收率技术中的应用[J]. 断块油气田, 2018, 25(2): 269-272
GAO K X, FAN Y Q, JIN Z M, et al. Application of microfluidic chip in enhanced oil recovery [J]. Fault Block Oil and Gas Field, 2018, 25(2): 269-272
[5] 董亮, 霍丹群, 周军, 等. 微流控芯片在食品安全分析中的应用进展[J]. 分析测试学报, 2015, 34(4): 483-487
DONG L, HUO D Q, ZHOU J, et al. Application progress of microfluidic chip in food safety analysis [J]. Journal of Analytical Testing, 2015, 34(4): 483-487
[6] ZHAO C X, MILLER E, COOPER-WHITE J J, et al. Effects of fluid-fluid interfacial elasticity on droplet formation in microfluidic devices [J]. Aiche Journal, 2011, 57(7): 1669-1677
[7] TUCKERMAN D B, PEASE R. High-performance heat sinking for VLSI [J]. IEEE Electron Device Letters, 1981, 2(5): 126-129
[8] 林炳承. 微纳流控芯片实验室[M]. 北京: 科学出版社, 2013.
[9] CHEN B, GUO F, LI G J, et al. Three-dimensional simulation of bubble formation through a microchannel t-junction [J]. Chemical Engineering Technology, 2013, 36(12): 1-15
[10] RAJ R, MATHUR N, BUWA V V, et al. Numerical simulations of liquid-liquid flows in microchannels [J]. Industrial & Engineering Chemistry Research, 2010, 49(21): 10606-10614
[11] SOMASEKHARA G S, ARNAB A. CFD analysis of microfluidic droplet formation in non-newtonian liquid [J]. Chemical Engineering Journal, 2017, 330: 245-261
[12] 王维萌, 马一萍, 陈斌. 十字交叉微通道内微液滴生成过程的数值模拟[J]. 化工学报, 2015, 66(5): 1633-1641
WANG W M, MA Y P, CHEN B. Numerical simulation of droplet formation in crossing micro-channels [J]. Journal of Chemical Engineering, 2015, 66(5): 1633-1641
[13] 杨丽, 周围, 王学浩, 等. 基于流动聚焦结构的微液滴形成机理[J]. 微纳电子技术, 2015, 52(9): 576-580
YANG L, ZHOU W, WANG X H, et al. Microdroplet formation mechanism based on flow focusing structure [J]. Micro-electronic Technology, 2015, 52(9): 576-580
[14] 陈珉芮, 钱锦远, 李晓娟, 等. 十字型微通道中非定常分散相速度下液滴生成的数值分析[J]. 高校化学工程学报, 2008, 32(3): 522-528
CHEN M R, QIAN J Y, LI X J, et al. Numerical analysis of droplet formation at unsteady dispersed phase velocity in crossing microchannels [J]. Journal of Chemical Engineering of University of China, 2008, 32(3): 522-528
[15] 吴梁玉. 双乳液的制备及其流体动力学行为研究[D]. 南京: 东南大学, 2016.
[16] 吴平. 液滴微流控的实验应用和理论研究[D]. 合肥: 中国科学技术大学, 2014.
[17] 钟映春, 谭湘强, 杨宜民. 微流体力学几个问题的探讨[J]. 广东工业大学学报, 2001, 18(3): 46-48
ZHONG Y C, TAN X Q, YANG Y M. Discussion on several Issues in microfluid mechanism [J]. Journal of Guangdong University of Technology, 2001, 18(3): 46-48
[1] 刘效洲, 朱睿, 朱光羽. 天然气掺氢燃烧技术在旋流式燃气灶上的数值模拟研究[J]. 广东工业大学学报, 2023, 40(01): 113-121.
[2] 邹翀, 唐雄民, 陈伟正, 江天鸿, 方文睿. 脉冲电流源作用下大气压介质阻挡放电的特性分析[J]. 广东工业大学学报, 2022, 39(04): 36-45.
[3] 戴美玲, 程成, 吴智文, 卢镇伟, 卢杰迅, 杨坚, 杨福俊. 开孔空心球结构的准静态压缩力学行为[J]. 广东工业大学学报, 2022, 39(04): 83-90,97.
[4] 刘效洲, 朱光羽. 循环流化床锅炉风室内流动特性及优化研究[J]. 广东工业大学学报, 2022, 39(03): 116-124.
[5] 李宇航, 高振宇, 杨雪强, 刘攀. 静压钢板桩贯入阻力试验与数值仿真[J]. 广东工业大学学报, 2022, 39(01): 129-134.
[6] 甘阳阳, 李志生. 空气幕对厨房内PM2.5控制效果的模拟与分析[J]. 广东工业大学学报, 2020, 37(03): 82-87.
[7] 刘陈霖, 郑三强, 韩晓卓. 具有Allee效应捕食-竞争系统的时空动态分析[J]. 广东工业大学学报, 2019, 36(06): 38-44.
[8] 吴成赫, 刘丽孺, 陈毅刚, 王璋元. 旋转集热板式太阳能烟囱性能研究[J]. 广东工业大学学报, 2018, 35(05): 70-74.
[9] 赵冰春, 汪新, 赖志平. 居住小区布局形式对热环境的影响[J]. 广东工业大学学报, 2016, 33(06): 91-95.
[10] 王长宏, 黄炯桐, 曾文强. 高熔点钢板电阻点焊电极传热特性数值模拟与分析[J]. 广东工业大学学报, 2016, 33(03): 6-10.
[11] 刘勇健, 刘意美, 陈创鑫, 王颖, 罗启洋, 林辉. 软土深基坑围护结构水平变形特性研究[J]. 广东工业大学学报, 2016, 33(01): 89-94.
[12] 杨艺. 海水太阳池非稳态热质传递有限容积法模型[J]. 广东工业大学学报, 2015, 32(2): 120-125.
[13] 赖志平, 汪新. 某会展中心建筑表面风压分布的数值模拟[J]. 广东工业大学学报, 2014, 31(2): 78-84.
[14] 陈雪清, 陈颖, 莫松平. 多孔隔板气液分离联箱的实验研究[J]. 广东工业大学学报, 2014, 31(1): 12-17.
[15] 张雅宁, 杨春山, 刘锦伟, 何娜. 基坑开挖对既有桥梁桩基的数值分析[J]. 广东工业大学学报, 2014, 31(1): 107-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!