广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (04): 36-45.doi: 10.12052/gdutxb.210007

• • 上一篇    下一篇

脉冲电流源作用下大气压介质阻挡放电的特性分析

邹翀, 唐雄民, 陈伟正, 江天鸿, 方文睿   

  1. 广东工业大学 自动化学院, 广东 广州 510006
  • 收稿日期:2021-01-14 出版日期:2022-07-10 发布日期:2022-06-29
  • 通信作者: 唐雄民(1977–),男,副教授,博士,主要研究方向为介质阻挡放电装置供电电源,E-mail:tangxiongmin@126.com
  • 作者简介:邹翀(1994–),男,硕士研究生,主要研究方向为介质阻挡放电机理分析及其供电电源设计
  • 基金资助:
    国家自然科学基金资助项目(51207026)

A Characteristic Analysis of Atmospheric Pressure Dielectric Barrier Discharge Powered by Pulse Current Source

Zou Chong, Tang Xiong-min, Chen Wei-zheng, Jiang Tian-hong, Fang Wen-rui   

  1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-01-14 Online:2022-07-10 Published:2022-06-29

摘要: 针对目前研究人员主要是对正弦电压或脉冲电压下大气压介质阻挡放电 (Atmospheric Pressure Dielectric Barrier Discharge, APDBD)的特性进行分析以及少有研究人员对电流源作用下APDBD特性进行分析这一现状,以双极性脉冲电流激励下的氦气(He)型APDBD为研究对象,通过构建APDBD一维流体模型对APDBD的伏安–时间特性、氦离子(He+)与激发态的氦原子(He*)的时空分布特征进行数值分析。结果表明:He+、He*的数密度与外施电流幅值存在正相关性、与气隙宽度存在负相关性;气隙击穿电压与外施电流幅值呈负相关性、与气隙宽度呈正相关性;气隙宽度和外施电流幅值的增加都会使He*密集区更分散。此外,还对APDBD的电气等效电路、气隙宽度的选择、电流幅值的设定、电流脉宽、电流上升时间及电源频率对APDBD特性的影响进行了讨论。

关键词: 大气压介质阻挡放电, 脉冲电流源, 数值模拟, 时空分布, 特性

Abstract: Since the characteristics of Atmospheric Pressure Dielectric Barrier Discharges (APDBD) are usually analyzed under sinusoidal voltage or pulse voltage, the characteristics of APDBDs powered by current source have been little studied. To address the issue, the characteristics of APDBD filled with helium are studied under bipolar pulse current. By constructing a one-dimensional fluid model of the APDBD, the voltammetry property of the APDBD and the temporal-spatial distribution characteristics of helium ions (He+) and excited helium atoms (He*) are numerically analyzed. The results show that the number density of He+ and He* is proportional to the current amplitude, and negatively correlated with the gap width. The breakdown voltage of the gap is negatively correlated with the amplitude of the applied current and positively correlated with the width of the gap. The increase of the gap width and the current amplitude makes the He* dense area more dispersed. In addition, the electrical equivalent circuit of APDBD, the selection of gap width effects, the effects of current amplitude, current rise time and working frequency are discussed.

Key words: atmospheric pressure dielectric barrier discharge, pulse current source, numerical analysis, temporal-spatial distribution, characteristic

中图分类号: 

  • TM836
[1] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9.
DAI D, NING W J, SHAO T. A review on the state of art and future trends of atmospheric pressure low temperature plasmas [J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9.
[2] HUANG X T, ZHOU S M, LIU M H. Investigation of the coupled volume dielectric barrier discharge for ozone formation in open atmospheric air [J]. IEEE Transactions on Plasma Science., 2018, 46(8): 2887-2893.
[3] 李超. 介质阻挡放电技术处理挥发性有机物的研究进展[J]. 化工进展, 2020, 39(5): 1964-1973.
LI C. Research progress on VOCs degradation using dielectric barrier discharge plasma [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1964-1973.
[4] 马良军, 王佳媚, 黄明明, 等. 不同处理条件对介质阻挡放电低温等离子体杀菌效果及影响机理研究[J]. 微生物学报, 2019, 59(4): 1513-1521.
MA L J, WANG J M, HUANG M M, et al. Sterilization by dielectric barrier discharge low temperature plasma under different treatment conditions [J]. Acta Microbiologica Sinica, 2019, 59(4): 1513-1521.
[5] SHAO T, LIU F, HAI B, et al. Surface modification of epoxy using an atmospheric pressure dielectric barrier discharge to accelerate surface charge dissipation [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3): 1557-1565.
[6] 徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996.
[7] 郑殿春. 气体放电数值仿真方法[M]. 北京: 科学出版社, 2016.
[8] 史曜炜, 周若瑜, 崔行磊, 等. 不同电源激励下共面介质阻挡放电特性实验[J]. 电工技术学报, 2018, 33(22): 5371-5380.
SHI Y W, ZHOU R Y, CUI X L, et al. Experimental investigation on characteristics of coplanar dielectric barrier discharge driven by different power supplies [J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5371-5380.
[9] ZHAO Z L, WANG W C, YANG D Z, et al. Nanosecond pulsed array wire-to-wire surface dielectric barrier discharge in atmospheric air: electrical and optical emission spectra characters influenced by quantity of electrodes [J]. IEEE Transactions on Plasma Science., 2019, 47(8): 4219-4224.
[10] 陈紫蒙, 马天鹏, 赵琼, 等. 大气压空气介质阻挡放电的数值模拟[J]. 东华大学学报(自然科学版), 2018, 44(3): 485-494.
CHEN Z M, MA T P, ZHAO Q, et al. Numerical simulation of atmospheric air dielectric barrier discharges [J]. Journal of Donghua University (Natural Science), 2018, 44(3): 485-494.
[11] PAN J, LI L, WANG Y N. Particle densities of the atmospheric-pressure argon plasmas generated by the pulsed dielectric barrier discharges [J]. Plasma Science and Technology, 2016, 18(11): 1081-1088.
[12] FANG Z, JI S C, PAN J, et al. Electrical model and experimental analysis of the atmospheric-pressure homogeneous dielectric barrier discharge in He [J]. IEEE Transactions on Plasma Science, 2012, 40(3): 883-891.
[13] DIEZ R, PIQUET H, FLOREZ D, et al. Current-mode approach in power supplies for DBD excilamps: review of 4 topologies [J]. IEEE Transactions on Plasma Science, 2015, 43(1): 452-460.
[14] RUEDA V, WIESNER A, DIEZ R, et al. Power estimation of a current supplied DBD considering the transformer parasitic elements [J]. IEEE Transactions on Industry Applications, 2019, 55(6): 6567-6575.
[15] FLOREZ D, DIEZ R, PIQUET H, et al. Square-shape current-mode supply for parametric control of the DBD excilamp power [J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1451-1460.
[16] EI-DEIB A A, DAWSON F, EERDEN G V, et al. Analysis and experimental validation of a new current-controlled driver for a dielectric barrier discharge lamp [J]. IEEE Transactions on Industry Applications, 2011, 47(4): 1974-1982.
[17] 张雨晖. 大气压氦气介质阻挡放电中典型非线性现象的仿真研究[D]. 广州: 华南理工大学, 2019.
[18] SANTOS M, NOEL C, BELMONTE T. Microwave capillary plasmas in helium at atmospheric pressure[DB]. (2017-11-14)[2020-07-28]. https://www.lx-cat.net/.
[19] 万静, 宁文军, 张雨晖, 等. 气隙宽度对大气压氦气介质阻挡放电多脉冲特性影响的仿真研究[J]. 电工技术学报, 2019, 34(4): 871-879.
WAN J, NING W J, ZHANG Y H, et al. Influence of gap width on the multipeak characteristics of atmospheric pressure helium dielectric barrier discharges-a numerical approach [J]. Transactions of China Electrotechnical Society, 2019, 34(4): 871-879.
[20] LAZAROU C, BELMONTE T, CHIPER A S, et al. Numerical modelling of the effect of dry air traces in a helium parallel plate dielectric barrier discharge [J]. Plasma Sources Science and Technology, 2016, 25(5): 1-20.
[21] TANG X, LI Z, ZHANG M. A wide-range frequency model for dielectric barrier discharge type ozone generators powered by series resonant inverters[J]. IEEE Access, 2019, 7: 124309-124314.
[22] 王帅, 邱祁, 刘星亮, 等. 大气压短间隙介质阻挡放电等效负载模型[J]. 电工电能新技术, 2018, 37(11): 9-14.
WANG S, QIU Q, LIU X L, et al. Equivalent load model of dielectric barrier discharge in short gap at atmospheric pressure [J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(11): 9-14.
[23] 潘光胜, 谭震宇, 王晓龙, 等. 高氧浓度下大气压Ar/O2脉冲介质阻挡放电频率特性数值研究[J]. 电工技术学报, 2017, 32(20): 71-81.
PAN G S, TAN Z Y, WANG X L, et al. A numerical study on the frequency effects of the electrical characteristics of the pulsed dielectric barrier discharge in Ar/O2 with high oxygen concentration at atmospheric pressure [J]. Transactions of China Electrotechnical Society, 2017, 32(20): 71-81.
[1] 刘效洲, 朱睿, 朱光羽. 天然气掺氢燃烧技术在旋流式燃气灶上的数值模拟研究[J]. 广东工业大学学报, 2023, 40(01): 113-121.
[2] 戴美玲, 程成, 吴智文, 卢镇伟, 卢杰迅, 杨坚, 杨福俊. 开孔空心球结构的准静态压缩力学行为[J]. 广东工业大学学报, 2022, 39(04): 83-90,97.
[3] 刘效洲, 朱光羽. 循环流化床锅炉风室内流动特性及优化研究[J]. 广东工业大学学报, 2022, 39(03): 116-124.
[4] 李宇航, 高振宇, 杨雪强, 刘攀. 静压钢板桩贯入阻力试验与数值仿真[J]. 广东工业大学学报, 2022, 39(01): 129-134.
[5] 彭同壮, 刘立程, 杨关水. 基于深度特性的帧间预测快速算法[J]. 广东工业大学学报, 2021, 38(03): 36-41.
[6] 张雪娇, 刘攀, 杨雪强, 汪洋. 石灰改良黄土渗透性与孔隙结构的关系研究[J]. 广东工业大学学报, 2021, 38(03): 97-103.
[7] 王彦光, 朱鸿斌, 徐维超. ROC曲线及其分析方法综述[J]. 广东工业大学学报, 2021, 38(01): 46-53.
[8] 罗钧午, 李冬梅, 梁帅, 王帅超, 肖曙红. 十字交叉型微通道内液滴形成的数值模拟研究[J]. 广东工业大学学报, 2020, 37(05): 68-74.
[9] 郭坤翔, 李德源, 黄俊东. 极端运行阵风下后掠型风力机叶片的气动特性研究[J]. 广东工业大学学报, 2020, 37(05): 100-104.
[10] 甘阳阳, 李志生. 空气幕对厨房内PM2.5控制效果的模拟与分析[J]. 广东工业大学学报, 2020, 37(03): 82-87.
[11] 庄楚楠, 许佳雄, 林俊辉. CZTSSe薄膜与Mo背电极接触特性的数值分析[J]. 广东工业大学学报, 2020, 37(03): 106-113.
[12] 郑晓生, 罗俊伟, 卢沛, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 采用R1234ze(E)/R245fa的非共沸混合工质有机朗肯循环系统实验研究[J]. 广东工业大学学报, 2020, 37(03): 114-120.
[13] 黄涛涛, 刘立程, 彭同壮. 基于运动特性的帧间预测模式快速选择算法[J]. 广东工业大学学报, 2020, 37(02): 74-79.
[14] 梁仕华, 陈俊涛, 林焕生, 冯德銮, 龚星, 罗庆姿. 水泥固化淤泥废弃土作为填土材料的试验研究[J]. 广东工业大学学报, 2020, 37(02): 102-106.
[15] 刘陈霖, 郑三强, 韩晓卓. 具有Allee效应捕食-竞争系统的时空动态分析[J]. 广东工业大学学报, 2019, 36(06): 38-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!