广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (03): 82-87.doi: 10.12052/gdutxb.190086
甘阳阳, 李志生
Gan Yang-yang, Li Zhi-sheng
摘要: 厨房烹饪是民居室内PM2.5污染物的重要来源,为对其进行有效控制,提出了空气幕送风方式。建立厨房物理模型,使用Fluent软件对厨房内的气流组织、温度分布和PM2.5浓度分布进行了数值模拟。研究了空气幕对厨房内PM2.5和热流的控制效果,并对3种射流速度进行对比分析。研究结果表明:空气幕射流气流对烹饪区域产生了很好的包裹效应,可以阻隔PM2.5的扩散和热流的蔓延;可使厨房内PM2.5排除率提高到44%~75%,平均降温1~2℃。当空气幕射流速度为0.6 m/s时,控制效果最佳。研究结论可对厨房PM2.5污染的防治提供参考,为空气幕送风系统的研究提供模拟数据和理论依据。
中图分类号:
[1] GAO J, JIAN Y, CAO C, et al. Indoor emission, dispersion and exposure of total partcle-bound polycyclic aromatic hydrocarbons during cooking [J]. Atmospheric Environment, 2015, 120(26): 191-199 [2] SAITO E, TANAKA N, MIYAZAKI A, et al. Concentration and particle size distribution of polycyclic aromatic hydrocarbons formed by thermal cooking [J]. Food Chemistry, 2014, 153(9): 285-291 [3] 蔡志良, 孙在, 陈秋方, 等. 厨房油烟超细颗粒排放特征[J]. 中国计量大学学报, 2015, 26(1): 75-79 CAO Z L, SUN Z, CHEN Q F, et al. The emission characteristics of ultrafine particles produced by cooking [J]. Journal of China University of Metrology, 2015, 26(1): 75-79 [4] 吴鑫, 修光利, 王丽娜, 等. 不同种类食用油对颗粒物排放特征的影响[J]. 华东理工大学学报(自然科学版), 2016, 42(1): 65-71 WU X, XIU G L, WANG L N, et al. Impact of oil types on emission characteristics of particles [J]. Journal of East China University of Science and Technology (Natural Science Edition), 2016, 42(1): 65-71 [5] DU B, GAO J, CHEN J, et al. Particle exposure level and potential health risks of domestic chinese cooking [J]. Building & Environment, 2017, 123(44): 564-574 [6] 高军, 曹昌盛, 周翔, 等. 住宅厨房油烟颗粒散发阶段呼吸区短期暴露的实验研究[J]. 建筑科学, 2012, 28(S2): 72-74 [7] GAO J, CAO C, WANG L, et al. Determination of size-dependent source emission rate of cooking-generated aerosol particles at the oil-heating stage in an experimental kitchen [J]. Aerosol and Air Quality Research, 2013, 13(2): 488-496 [8] 范德龙, 曹素珍, 张亚群, 等. 兰州市采暖期居民室内PM2.5污染水平初步研究[J]. 环境与健康杂志, 2014, 31(3): 232-234 FAN D L, CAO S Z, ZHANG Y Q, et al. Preliminary study on indoor PM2.5 pollution levels of residents in Lanzhou during heating period [J]. Journal of Environment & Health, 2014, 31(3): 232-234 [9] WU F, WANG W, MAN Y B, et al. Levels of PM 2.5/PM 10 and associated metal(loid)s in rural households of Henan Province, China [J]. Science of the Total Environment, 2015, 512-513(48): 194-200 [10] AMOUEI T M, OSPANOVA S, BAIBATYROVA A, et al. Contributions of burner, pan, meat and salt to PM emission during grilling [J]. Environmental Research, 2018, 164(53): 11-17 [11] 马广韬, 敖宇. 厨房空气环境质量优化控制[J]. 沈阳建筑大学学报(自然科学版), 2014, 30(6): 1095-1102 MA G T, AO Y. Research on optimization control for quality of kitchen air environment [J]. Journal of Shenyang Jianzhu University (Natural Science), 2014, 30(6): 1095-1102 [12] 史诺, 李雅茹, 乔丽洁. 利用空气幕提高抽油烟机抽吸效率[J]. 轻工机械, 2011, 29(6): 95-97 SHI N, LI Y R, QIAO L J. Applying air screen to improve suction efficiency of range hood in kitchen fan [J]. Light Industry Machinery, 2011, 29(6): 95-97 [13] SIMONE A, OLESEN B W, STOOPS J L, et al. Thermal comfort in commercial kitchens (RP-1469): Procedure and physical measurements (Part 1) [J]. Hvac & Research, 2013, 19(8): 1001-1015 [14] ZHANG W, HE J P, ZHOU R. Numerical simulation on the parameters of smoke buffer with air curtain [J]. Fire Science & Technology, 2013, 10(38): 1093-1096 [15] ZHOU B, CHEN F, DONG Z, et al. Study on pollution control in residential kitchen based on the push-pull ventilation system [J]. Building & Environment, 2016, 107(44): 99-112 [16] 宣凯云, 陈丽萍, 龚延风, 等. 室内细颗粒物(PM2.5)浓度影响因素的数值模拟[J]. 暖通空调, 2016, 46(9): 120-123 XUAN K Y, CHEN L P, GONG Y F, et al. Numerical simulation on factors influencing indoor PM2.5 concentration [J]. Heating Ventilating & Air Conditioning, 2016, 46(9): 120-123 [17] 李志生, 刘旭红, 郑杰东, 等. 登机桥热环境模拟与气流组织分析[J]. 广东工业大学学报, 2018, 35(2): 28-34 LI Z S, LIU X H, ZHENG J D, et al. Thermal environment simulation and airflow distribution analysis of passenger boarding bridge [J]. Journal of Guangdong University of Technology, 2018, 35(2): 28-34 [18] GAO J, CAO C, XIAO Q, et al. Determination of dynamic intake fraction of cooking-generated particles in the kitchen [J]. Building and Environment, 2013, 65(44): 146-153 [19] LIU Y, LI H, FENG G. Simulation of inhalable aerosol particle distribution generated from cooking by Eulerian approach with RNG k-epsilon turbulence model and pollution exposure in a residential kitchen space [J]. Building Simulation, 2017, 10(1): 1-10 [20] GAO J, CAO C, ZHANG X, et al. Volume-based size distribution of accumulation and coarse particles (PM0.1–10) from cooking fume during oil heating [J]. Building & Environment, 2013, 59(3): 575-580 [21] 张辉辉. 厨房颗粒物分布运动规律及数值分析[D]. 哈尔滨: 哈尔滨工业大学, 2016. [22] CHEN C, ZHAO Y, ZHANG Y, et al. Source strength of ultrafine and fine particle due to Chinese cooking [J]. Procedia Engineering, 2017, 205(11): 2231-2237 [23] 中华人民共和国住房和城乡建设部. GB 50736-2012, 《民用建筑供暖通风与空气调节设计规范》[S]. 北京: 中国建筑工业出版社, 2012. |
[1] | 刘效洲, 朱睿, 朱光羽. 天然气掺氢燃烧技术在旋流式燃气灶上的数值模拟研究[J]. 广东工业大学学报, 2023, 40(01): 113-121. |
[2] | 邹翀, 唐雄民, 陈伟正, 江天鸿, 方文睿. 脉冲电流源作用下大气压介质阻挡放电的特性分析[J]. 广东工业大学学报, 2022, 39(04): 36-45. |
[3] | 戴美玲, 程成, 吴智文, 卢镇伟, 卢杰迅, 杨坚, 杨福俊. 开孔空心球结构的准静态压缩力学行为[J]. 广东工业大学学报, 2022, 39(04): 83-90,97. |
[4] | 曾江毅, 李志生, 欧耀春, 金宇凯. 季节指数改进的PM2.5质量浓度组合预测模型研究[J]. 广东工业大学学报, 2022, 39(03): 89-94. |
[5] | 刘效洲, 朱光羽. 循环流化床锅炉风室内流动特性及优化研究[J]. 广东工业大学学报, 2022, 39(03): 116-124. |
[6] | 李宇航, 高振宇, 杨雪强, 刘攀. 静压钢板桩贯入阻力试验与数值仿真[J]. 广东工业大学学报, 2022, 39(01): 129-134. |
[7] | 罗钧午, 李冬梅, 梁帅, 王帅超, 肖曙红. 十字交叉型微通道内液滴形成的数值模拟研究[J]. 广东工业大学学报, 2020, 37(05): 68-74. |
[8] | 刘陈霖, 郑三强, 韩晓卓. 具有Allee效应捕食-竞争系统的时空动态分析[J]. 广东工业大学学报, 2019, 36(06): 38-44. |
[9] | 吴成赫, 刘丽孺, 陈毅刚, 王璋元. 旋转集热板式太阳能烟囱性能研究[J]. 广东工业大学学报, 2018, 35(05): 70-74. |
[10] | 赵冰春, 汪新, 赖志平. 居住小区布局形式对热环境的影响[J]. 广东工业大学学报, 2016, 33(06): 91-95. |
[11] | 王长宏, 黄炯桐, 曾文强. 高熔点钢板电阻点焊电极传热特性数值模拟与分析[J]. 广东工业大学学报, 2016, 33(03): 6-10. |
[12] | 刘勇健, 刘意美, 陈创鑫, 王颖, 罗启洋, 林辉. 软土深基坑围护结构水平变形特性研究[J]. 广东工业大学学报, 2016, 33(01): 89-94. |
[13] | 杨艺. 海水太阳池非稳态热质传递有限容积法模型[J]. 广东工业大学学报, 2015, 32(2): 120-125. |
[14] | 赖志平, 汪新. 某会展中心建筑表面风压分布的数值模拟[J]. 广东工业大学学报, 2014, 31(2): 78-84. |
[15] | 张雅宁, 杨春山, 刘锦伟, 何娜. 基坑开挖对既有桥梁桩基的数值分析[J]. 广东工业大学学报, 2014, 31(1): 107-111. |
|