广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (03): 82-87.doi: 10.12052/gdutxb.190086

• • 上一篇    下一篇

空气幕对厨房内PM2.5控制效果的模拟与分析

甘阳阳, 李志生   

  1. 广东工业大学 土木与交通工程学院, 广东 广州 510006
  • 收稿日期:2019-06-26 出版日期:2020-05-12 发布日期:2020-05-21
  • 作者简介:甘阳阳(1993-),男,硕士研究生,主要研究方向为建筑节能和室内空气品质
  • 基金资助:
    广东省自然科学基金资助项目(S2011040003755)

A Numerical Simulation and an Analysis of Air Curtain Control Effect on PM2.5 in the Kitchen

Gan Yang-yang, Li Zhi-sheng   

  1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-06-26 Online:2020-05-12 Published:2020-05-21

摘要: 厨房烹饪是民居室内PM2.5污染物的重要来源,为对其进行有效控制,提出了空气幕送风方式。建立厨房物理模型,使用Fluent软件对厨房内的气流组织、温度分布和PM2.5浓度分布进行了数值模拟。研究了空气幕对厨房内PM2.5和热流的控制效果,并对3种射流速度进行对比分析。研究结果表明:空气幕射流气流对烹饪区域产生了很好的包裹效应,可以阻隔PM2.5的扩散和热流的蔓延;可使厨房内PM2.5排除率提高到44%~75%,平均降温1~2℃。当空气幕射流速度为0.6 m/s时,控制效果最佳。研究结论可对厨房PM2.5污染的防治提供参考,为空气幕送风系统的研究提供模拟数据和理论依据。

关键词: 民居厨房, PM2.5, 数值模拟, 空气幕控制

Abstract: Cooking in the residential kitchen is an important source of indoor PM2.5. In order to control PM2.5 effectively, the air curtain is proposed as an air supply means. A model of the kitchen is built and a numerical simulation, including airflow organization, temperature distribution and PM2.5 concentration distribution in the kitchen, is performed by using the Fluent software. A numerical simulation is performed to study the control effect of PM2.5 pollutants and heat flow in the kitchen. Three kinds of jet velocities are compared and analyzed. The results of this study show that the jet flow of an air curtain has a good wrapping effect on the cooking area, which can obstruct the diffusion of PM2.5 and the spread of heat flow. The PM2.5 removal rate can be increased to 44%~75%, and the average temperature in the kitchen can be lowered by 1~2 ℃ by using the air curtain to supply air. The control effect is optimal when the air curtain jet velocity is 0.6 m/s. The research productions have reference for the prevention and treatment of PM2.5 pollution in the kitchen and can provide simulation data and a theoretical basis for the study of the air curtain air supply system.

Key words: residential kitchen, fine particulate matter(PM2.5), numerical simulation, air curtain control

中图分类号: 

  • TU834.8
[1] GAO J, JIAN Y, CAO C, et al. Indoor emission, dispersion and exposure of total partcle-bound polycyclic aromatic hydrocarbons during cooking [J]. Atmospheric Environment, 2015, 120(26): 191-199
[2] SAITO E, TANAKA N, MIYAZAKI A, et al. Concentration and particle size distribution of polycyclic aromatic hydrocarbons formed by thermal cooking [J]. Food Chemistry, 2014, 153(9): 285-291
[3] 蔡志良, 孙在, 陈秋方, 等. 厨房油烟超细颗粒排放特征[J]. 中国计量大学学报, 2015, 26(1): 75-79 CAO Z L, SUN Z, CHEN Q F, et al. The emission characteristics of ultrafine particles produced by cooking [J]. Journal of China University of Metrology, 2015, 26(1): 75-79
[4] 吴鑫, 修光利, 王丽娜, 等. 不同种类食用油对颗粒物排放特征的影响[J]. 华东理工大学学报(自然科学版), 2016, 42(1): 65-71 WU X, XIU G L, WANG L N, et al. Impact of oil types on emission characteristics of particles [J]. Journal of East China University of Science and Technology (Natural Science Edition), 2016, 42(1): 65-71
[5] DU B, GAO J, CHEN J, et al. Particle exposure level and potential health risks of domestic chinese cooking [J]. Building & Environment, 2017, 123(44): 564-574
[6] 高军, 曹昌盛, 周翔, 等. 住宅厨房油烟颗粒散发阶段呼吸区短期暴露的实验研究[J]. 建筑科学, 2012, 28(S2): 72-74
[7] GAO J, CAO C, WANG L, et al. Determination of size-dependent source emission rate of cooking-generated aerosol particles at the oil-heating stage in an experimental kitchen [J]. Aerosol and Air Quality Research, 2013, 13(2): 488-496
[8] 范德龙, 曹素珍, 张亚群, 等. 兰州市采暖期居民室内PM2.5污染水平初步研究[J]. 环境与健康杂志, 2014, 31(3): 232-234 FAN D L, CAO S Z, ZHANG Y Q, et al. Preliminary study on indoor PM2.5 pollution levels of residents in Lanzhou during heating period [J]. Journal of Environment & Health, 2014, 31(3): 232-234
[9] WU F, WANG W, MAN Y B, et al. Levels of PM 2.5/PM 10 and associated metal(loid)s in rural households of Henan Province, China [J]. Science of the Total Environment, 2015, 512-513(48): 194-200
[10] AMOUEI T M, OSPANOVA S, BAIBATYROVA A, et al. Contributions of burner, pan, meat and salt to PM emission during grilling [J]. Environmental Research, 2018, 164(53): 11-17
[11] 马广韬, 敖宇. 厨房空气环境质量优化控制[J]. 沈阳建筑大学学报(自然科学版), 2014, 30(6): 1095-1102 MA G T, AO Y. Research on optimization control for quality of kitchen air environment [J]. Journal of Shenyang Jianzhu University (Natural Science), 2014, 30(6): 1095-1102
[12] 史诺, 李雅茹, 乔丽洁. 利用空气幕提高抽油烟机抽吸效率[J]. 轻工机械, 2011, 29(6): 95-97 SHI N, LI Y R, QIAO L J. Applying air screen to improve suction efficiency of range hood in kitchen fan [J]. Light Industry Machinery, 2011, 29(6): 95-97
[13] SIMONE A, OLESEN B W, STOOPS J L, et al. Thermal comfort in commercial kitchens (RP-1469): Procedure and physical measurements (Part 1) [J]. Hvac & Research, 2013, 19(8): 1001-1015
[14] ZHANG W, HE J P, ZHOU R. Numerical simulation on the parameters of smoke buffer with air curtain [J]. Fire Science & Technology, 2013, 10(38): 1093-1096
[15] ZHOU B, CHEN F, DONG Z, et al. Study on pollution control in residential kitchen based on the push-pull ventilation system [J]. Building & Environment, 2016, 107(44): 99-112
[16] 宣凯云, 陈丽萍, 龚延风, 等. 室内细颗粒物(PM2.5)浓度影响因素的数值模拟[J]. 暖通空调, 2016, 46(9): 120-123 XUAN K Y, CHEN L P, GONG Y F, et al. Numerical simulation on factors influencing indoor PM2.5 concentration [J]. Heating Ventilating & Air Conditioning, 2016, 46(9): 120-123
[17] 李志生, 刘旭红, 郑杰东, 等. 登机桥热环境模拟与气流组织分析[J]. 广东工业大学学报, 2018, 35(2): 28-34 LI Z S, LIU X H, ZHENG J D, et al. Thermal environment simulation and airflow distribution analysis of passenger boarding bridge [J]. Journal of Guangdong University of Technology, 2018, 35(2): 28-34
[18] GAO J, CAO C, XIAO Q, et al. Determination of dynamic intake fraction of cooking-generated particles in the kitchen [J]. Building and Environment, 2013, 65(44): 146-153
[19] LIU Y, LI H, FENG G. Simulation of inhalable aerosol particle distribution generated from cooking by Eulerian approach with RNG k-epsilon turbulence model and pollution exposure in a residential kitchen space [J]. Building Simulation, 2017, 10(1): 1-10
[20] GAO J, CAO C, ZHANG X, et al. Volume-based size distribution of accumulation and coarse particles (PM0.1–10) from cooking fume during oil heating [J]. Building & Environment, 2013, 59(3): 575-580
[21] 张辉辉. 厨房颗粒物分布运动规律及数值分析[D]. 哈尔滨: 哈尔滨工业大学, 2016.
[22] CHEN C, ZHAO Y, ZHANG Y, et al. Source strength of ultrafine and fine particle due to Chinese cooking [J]. Procedia Engineering, 2017, 205(11): 2231-2237
[23] 中华人民共和国住房和城乡建设部. GB 50736-2012, 《民用建筑供暖通风与空气调节设计规范》[S]. 北京: 中国建筑工业出版社, 2012.
[1] 刘效洲, 朱睿, 朱光羽. 天然气掺氢燃烧技术在旋流式燃气灶上的数值模拟研究[J]. 广东工业大学学报, 2023, 40(01): 113-121.
[2] 邹翀, 唐雄民, 陈伟正, 江天鸿, 方文睿. 脉冲电流源作用下大气压介质阻挡放电的特性分析[J]. 广东工业大学学报, 2022, 39(04): 36-45.
[3] 戴美玲, 程成, 吴智文, 卢镇伟, 卢杰迅, 杨坚, 杨福俊. 开孔空心球结构的准静态压缩力学行为[J]. 广东工业大学学报, 2022, 39(04): 83-90,97.
[4] 曾江毅, 李志生, 欧耀春, 金宇凯. 季节指数改进的PM2.5质量浓度组合预测模型研究[J]. 广东工业大学学报, 2022, 39(03): 89-94.
[5] 刘效洲, 朱光羽. 循环流化床锅炉风室内流动特性及优化研究[J]. 广东工业大学学报, 2022, 39(03): 116-124.
[6] 李宇航, 高振宇, 杨雪强, 刘攀. 静压钢板桩贯入阻力试验与数值仿真[J]. 广东工业大学学报, 2022, 39(01): 129-134.
[7] 罗钧午, 李冬梅, 梁帅, 王帅超, 肖曙红. 十字交叉型微通道内液滴形成的数值模拟研究[J]. 广东工业大学学报, 2020, 37(05): 68-74.
[8] 刘陈霖, 郑三强, 韩晓卓. 具有Allee效应捕食-竞争系统的时空动态分析[J]. 广东工业大学学报, 2019, 36(06): 38-44.
[9] 吴成赫, 刘丽孺, 陈毅刚, 王璋元. 旋转集热板式太阳能烟囱性能研究[J]. 广东工业大学学报, 2018, 35(05): 70-74.
[10] 赵冰春, 汪新, 赖志平. 居住小区布局形式对热环境的影响[J]. 广东工业大学学报, 2016, 33(06): 91-95.
[11] 王长宏, 黄炯桐, 曾文强. 高熔点钢板电阻点焊电极传热特性数值模拟与分析[J]. 广东工业大学学报, 2016, 33(03): 6-10.
[12] 刘勇健, 刘意美, 陈创鑫, 王颖, 罗启洋, 林辉. 软土深基坑围护结构水平变形特性研究[J]. 广东工业大学学报, 2016, 33(01): 89-94.
[13] 杨艺. 海水太阳池非稳态热质传递有限容积法模型[J]. 广东工业大学学报, 2015, 32(2): 120-125.
[14] 赖志平, 汪新. 某会展中心建筑表面风压分布的数值模拟[J]. 广东工业大学学报, 2014, 31(2): 78-84.
[15] 张雅宁, 杨春山, 刘锦伟, 何娜. 基坑开挖对既有桥梁桩基的数值分析[J]. 广东工业大学学报, 2014, 31(1): 107-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!