广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (02): 83-87.doi: 10.12052/gdutxb.200047

• 综合研究 • 上一篇    下一篇

镓离子掺杂的CsPbBr3量子点的制备及其性能研究

周民华, 张文进, 潘春阳   

  1. 广东工业大学 轻工化工学院, 广东 广州 510006
  • 收稿日期:2020-03-19 出版日期:2021-03-10 发布日期:2021-01-13
  • 通信作者: 潘春阳(1981-),男,教授,博士生导师,主要研究方向为无机光电材料,E-mail:panchuny@gdut.edu.cn E-mail:panchuny@gdut.edu.cn
  • 作者简介:周民华(1993-),男,硕士研究生,主要研究方向为钙钛矿量子点材料
  • 基金资助:
    国家自然科学基金资助项目(21671044)

Preparation and Properties of CsPbBr3 Quantum Dots Doped with Gallium Ions

Zhou Min-hua, Zhang Wen-jin, Pan Chun-yang   

  1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-03-19 Online:2021-03-10 Published:2021-01-13

摘要: 通过改进的一锅热注入法, 研究了不同Ga3+的量掺杂CsPbBr3后的荧光光谱变化, 并且高荧光量子产率(Photoluminescence Quantum Yield,PLQY)在Ga3+和Pb2+的进料摩尔比为1∶1的时候达到最高, 是47%的蓝光。本文成功地将掺杂Ga3+的钙钛矿量子点负载到了硼酸钴晶体材料上, 发现其荧光强度在很长一段时间都没有明显的猝灭现象, 这增强了钙钛矿量子的稳定性。

关键词: 掺杂Ga3+钙钛矿量子点, 一锅热注入法, 稳定性, 高荧光量子产率

Abstract: We studied the fluorescence spectrum changes after doping CsPbBr3 with different amounts of Ga3+ by an improved one-pot hot-injection method, and photoluminescence quantum yield (PLQY) reached the highest when the molar ratio of Ga3+ and Pb2+ was 1∶1, which was 47% blue light. We successfully loaded Ga3+-doped perovskite quantum dots onto the cobalt borate crystal material, and found that the fluorescence intensity has no obvious quenching phenomenon for a long time, which enhances the stability of the perovskite quantum.

Key words: perovskite quantum dots doped Ga3+, one-pot hot injection method, stability, photoluminescence quantum yield

中图分类号: 

  • O611
[1] PAN J, SARMAH S P, MURALI B, et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single and two-photon-induced amplified spontaneous emission [J]. J Phys Chem Lett, 2015, 6(24): 5027-5033.
[2] ROO J D, GEIREGATP, NEDELCU G, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals [J]. ACS Nano, 2016, 10(2): 2071-2081.
[3] LI G, RIVAROLAF W R, DAVIS N J L K, et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method [J]. Adv Mater, 2016, 28(18): 3528-3534.
[4] YAKUNIN S, PROTESESCU L, KRIEG F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites [J]. Nat Commun, 2015, 6(20): 8515-8520.
[5] ZHANG F, ZHONGH, CHEN C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology [J]. ACS Nano, 2015, 9(4): 4533-4542.
[6] HU F, YINC, ZHANG H, et al. Slow auger recombination of charged excitons in nonblinking perovskite nanocrystals without spectral diffusion [J]. Nano Lett, 2016, 16(10): 6425-6430.
[7] MAKAROV N S, GUOS, LIU W, et al. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots [J]. Nano Lett, 2016, 16(4): 2349-2362.
[8] TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J]. Nat Nanotechnol, 2014, 9(9): 687.
[9] LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent [J]. Nature, 2018, 562(7726): 245-248.
[10] WANG W B, ZHAO D W, ZHANG F J, et al. Highly sensitive low-bandgap perovskite photodetectors with response from ultraviolet to the near-infrared region [J]. Adv Funct Mater, 2017, 27(42): 1703953-1703958.
[11] YIN G N, ZHAO H, JIANG H, et al. Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency [J]. Adv Funct Mater, 2018, 28(39): 1803269-1803274.
[12] VELDHUIS S A, BOIX P P, YANTARA, N, et al. Perovskite materials for light-emitting diodes and lasers [J]. Adv Mater, 2016, 28(32): 6804-6834.
[13] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange [J]. Science, 2015, 348(6240): 1234-1237.
[14] WU L Y, MU Y F, GUO X X, et al. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction [J]. Angew Chem Int Ed, 2019, 58(28): 9491-9495.
[15] LIU H, WU Z, SHAO J, et al. CsPbxMn1-xCl3 perovskite quantum dots with high Mn substitution ratio [J]. ACS Nano, 2017, 11(2): 2239-2247.
[16] YAO J S, GE J, HAN B N, et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3nanocrystals based light-emitting diodes [J]. J Am Chem Soc, 2018, 140(10): 3626-3634.
[17] LI M, ZHANG X, PSOTOLEK K M, et al. An anion-driven Sn2+ exchange reaction in CsPbBr3 nanocrystals towards tunable and high photoluminescence [J]. J Mater Chem C, 2018, 6(20): 5506-5513.
[18] SHAO H, BAI X, CUI H N, et al. White light emission in Bi3+/Mn2+ ion Co-doped CsPbCl3 perovskite nanocrystals [J]. Nanoscale, 2018, 10(3): 1023-1029.
[19] HE M L, CHENG Y Z, YUAN R R, et al. Mn-Doped cesium lead halide perovskite nanocrystals with dual-color emission for WLED [J]. Dyes and Pigments, 2018, 152(45): 146-154.
[20] LUO J J, WANG X M, LI S R, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites [J]. Nature, 2018, 563(7732): 541-545.
[21] NEDELCU G, PROTESESCU L, YAKUNIN S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I) [J]. Nano Lett, 2015, 15(8): 5635-5640.
[22] STAM W, GEUCHIES J, ALTANTZIS T, et al. Highly emissive divalent-ion-doped colloidal CsPb1-xMxBr3 perovskite nanocrystals through cation exchange [J]. J Am Chem Soc, 2017, 139(11): 4087-4097.
[23] LIANG Z Q, ZHAO S L, XU Z, et al. Shape-controlled synthesis of all-inorganic CsPbBr3 perovskite nanocrystals with bright blue emission [J]. ACS Appl Mater Interfaces, 2016, 8(42): 28824-28830.
[1] 刘雪, 刘忠明, 席跃宾, 王守娟, 孔凡功. 木质素基超疏水涂层的制备及其应用性能研究[J]. 广东工业大学学报, 2022, 39(01): 34-40,134.
[2] 唐浩怡, 彭红云. 三维趋化系统全局弱解的存在性和渐近稳定性[J]. 广东工业大学学报, 2022, 39(01): 93-98.
[3] 黄慧敏, 郭承军. 一类脉冲随机微分方程解的稳定性[J]. 广东工业大学学报, 2020, 37(06): 56-62.
[4] 梁仕华, 陈俊涛, 林焕生, 冯德銮, 龚星, 罗庆姿. 水泥固化淤泥废弃土作为填土材料的试验研究[J]. 广东工业大学学报, 2020, 37(02): 102-106.
[5] 刘陈霖, 郑三强, 韩晓卓. 具有Allee效应捕食-竞争系统的时空动态分析[J]. 广东工业大学学报, 2019, 36(06): 38-44.
[6] 张会琴, 汪志波. 带周期边界的时间分数阶扩散方程的差分格式[J]. 广东工业大学学报, 2019, 36(03): 74-79.
[7] 汪翔, 刘立凡, 王志红, 漆文光. 优质地表水源突发污染后长距离输水水质稳定性研究[J]. 广东工业大学学报, 2019, 36(03): 99-102,110.
[8] 刘铭炜, 禹智涛, 贺绍华. 基于统一理论的钢管混凝土拱桥稳定性分析[J]. 广东工业大学学报, 2018, 35(06): 63-68.
[9] 庄小兰, 王琦. 一阶时滞微分方程欧拉法的动力性[J]. 广东工业大学学报, 2018, 35(01): 46-49.
[10] 赵腾起, 朱燕娟, 李文华, 简修文, 罗洁, 张伟, 张春华. 掺杂氢氧化镍晶相及其结构稳定性与碳酸钠用量的关系研究[J]. 广东工业大学学报, 2016, 33(04): 56-61.
[11] 黄明辉. 多时滞的非线性微分方程的渐近稳定性[J]. 广东工业大学学报, 2016, 33(01): 62-66.
[12] 吴龙梁, 黄崧, 经晶, 樊露菲. 尾矿坝特殊工况动力稳定性分析[J]. 广东工业大学学报, 2015, 32(2): 28-31.
[13] 徐林, 宋常修. 一类三阶时滞微分方程的稳定性和有界性[J]. 广东工业大学学报, 2015, 32(1): 128-132.
[14] 王琳, 卢钻仪, 周志权, 黄泽滨, 温营浩, 林逢春. 比较原理和无限时滞随机泛函微分方程解的稳定性[J]. 广东工业大学学报, 2015, 32(04): 88-91.
[15] 周敏, 高学军, 董超. 解抛物型方程的八点隐式差分格式[J]. 广东工业大学学报, 2014, 31(4): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!