广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (03): 48-53.doi: 10.12052/gdutxb.230036

• 材料科学与技术 • 上一篇    下一篇

金-银复合微纳结构制备及高灵敏度表面增强拉曼散射检测

鄢中华, 陈星宇, 刘文杰   

  1. 广东工业大学 信息工程学院, 广东 广州 510006
  • 收稿日期:2023-02-27 出版日期:2024-05-25 发布日期:2024-05-25
  • 通信作者: 刘文杰(1988-),女,副教授,博士,主要研究方向为微纳光电子器件,E-mail:wjliu@gdut.edu.cn
  • 作者简介:鄢中华(1995-),男,硕士研究生,主要研究方向为微纳米光学和器件,E-mail:hysh1202@163.com
  • 基金资助:
    国家自然科学基金资助项目(61975037)

Preparation of Au-Ag Composite Micro and Nanostructures and High Sensitivity Surface Enhanced Raman Scattering Detection

Yan Zhong-hua, Chen Xing-yu, Liu Wen-jie   

  1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-02-27 Online:2024-05-25 Published:2024-05-25

摘要: 表面增强拉曼散射(Surface-enhanced Raman Scattering, SERS)是一种快速且灵敏度高的分子检测技术。拥有高灵敏的、均匀的拉曼信号是光谱技术的必要因素,同时拉曼衬底结构通常也面临复杂的工艺和高昂的成本。为了实现高性能SERS,本文采用多层金-银(Au-Ag)交替沉积、退火和脱合金技术制备多孔Au-Ag复合纳米结构,该方法能用于大面积制备,且制备工艺简便。通过在合适的温度下退火,可以在Au-Ag复合纳米结构表面形成大量纳米孔。这些纳米孔可以牢固地分布在表面形成热点。利用时域有限差分(Finite-difference Time-domain, FDTD)法模拟电场分布,结果表明在Au-Ag复合纳米结构表面可以产生极大的局域场增强效果。实验结果表明SERS检测具有良好的均匀性和高灵敏度。SERS基底检测罗丹明6G(Rhodamine 6G, R6G) 分子的增强因子达到2.4×105,相对标准偏差(Relative Standard Deviation, RSD)低至6.9%,对R6G分子的最低检测浓度可达10-11 mol/L。所提出的Au-Ag复合纳米结构及其制备工艺在制备高灵敏度的、高均匀性的SERS基底方面具有很大的潜力。

关键词: 表面增强拉曼散射, 多孔金-银复合纳米结构, 高灵敏度, 均匀, 退火

Abstract: Surface-enhanced Raman Scattering (SERS) is a rapid and highly sensitive molecular detection technology. Having a highly sensitive and uniform Raman signal is a necessary factor in spectroscopy. Raman substrate structures often face complex processes and high costs. To achieve high-performance SERS, Au-Ag composite nanostructures were prepared by multilayer Au-Ag alternate deposition, annealing and dealloying technology in this research, the method can be used for large-area preparation and facile preparation process. By annealing at a suitable temperature, a large number of nanopores are distributed on the surface of Au-Ag composite nanostructures, which can be firmly distributed on the surface to provide hot spots. The Finite-difference Time-domain (FDTD) method is used to simulate the electric field distribution, and the results show that the Au-Ag composite nanostructure surface can induce great local field enhancement. The experiment results exhibit excellent uniformity and high sensitivity of the SERS detection. The enhancement factor of the Rhodamine 6G (R6G) molecules detected by SERS substrate reaches 2.4×105, and the Relative Standard Deviation (RSD) is as low as 6.9%. The minimum detection concentration of R6G molecules by the Au-Ag composite nanostructures can reach 10-11 mol/L. The proposed Au-Ag composite nanostructures and the fabrication process have great potential in preparation of high sensitivity and excellent uniformity SERS substrate.

Key words: SERS (Surface-enhanced Raman Scattering), porous Au-Ag composite nanostructure, high-sensitivity, uniform, annealing

中图分类号: 

  • O482.3
[1] BAPTISTA P, PEREIRA E, EATON P. Gold nanoparticles for the development of clinical diagnosis methods [J]. Analytical and Bioanalytical Chemistry, 2008, 391(3): 943-950.
[2] LIM W Q, GAO Z. Plasmonic nanoparticles in biomedicine [J]. Nano Today, 2016, 11(2): 168-188.
[3] ZHENG T, LI G G, ZHOU F, et al. Gold-nanosponge-based multistimuli-responsive drug vehicles for targeted chemo-photothermal therapy [J]. Adv Mater, 2016, 28(37): 8218-8226.
[4] D'ACUNTO M, CIONI P, GABELLIERI E, et al. Exploiting gold nanoparticles for diagnosis and cancer treatments [J]. Nanotechnology, 2021, 32(19): 192001.
[5] WANG P, PANG S, PEARSON B, et al. Rapid concentration detection and differentiation of bacteria in skimmed milk using surface enhanced Raman scattering mapping on 4-mercaptophenylboronic acid functionalized silver dendrites [J]. Analytical and Bioanalytical Chemistry, 2017, 409(8): 2229-2238.
[6] FENG S, GAO F, CHEN Z, et al. Determination of alpha-tocopherol in vegetable oils using a molecularly imprinted polymers-surface-enhanced Raman spectroscopic biosensor [J]. Journal of Agricultural and Food Chemistry, 2013, 61(44): 10467-10475.
[7] YUE S, YE W, XU Z. SERS monitoring of the Fenton degradation reaction based on microfluidic droplets and alginate microparticles [J]. Analyst, 2019, 144(19): 5882-5889.
[8] YU J, YANG M, LI Z, et al. Hierarchical particle-in-quasicavity architecture for ultratrace in situ Raman sensing and its application in real-time monitoring of toxic pollutants [J]. Analytical Chemistry, 2020, 92(21): 14754-14761.
[9] CAMPION A, KAMBHAMPATI P. Surface-enhanced Raman scattering [J]. Chemical Society Reviews, 1998, 27: 241-250.
[10] LIU Z, YANG Z, PENG B, et al. Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins [J]. Advanced Materials, 2014, 26(15): 2431-2439.
[11] FANG J, DU S, LEBEDKIN S, et al. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy [J]. Nano Letters, 2010, 10(12): 5006-5013.
[12] LI Y, ZHOU L, TANG L H, et al. Improved surface enhanced Raman scattering based on hybrid Au nanostructures for biomolecule detection[J]. IEEE Photonics Journal, 2016, 8(6): 6806007.
[13] LEE H, LEE J H, JIN S M, et al. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering [J]. Nano Letters, 2013, 13(12): 6113-6121.
[14] WANG D, ZHU W, CHU Y, et al. High directivity optical antenna substrates for surface enhanced Raman scattering [J]. Advanced Materials, 2012, 24(32): 4376-4380.
[15] HATAB N A, HSUEH C H, GADDIS A L, et al. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy [J]. Nano Letters, 2010, 10(12): 4952-4955.
[16] SHEN Y, CHENG X, LI G, et al. Highly sensitive and uniform surface-enhanced Raman spectroscopy from grating-integrated plasmonic nanograss [J]. Nanoscale Horizons, 2016, 1(4): 290-297.
[17] WEI X, FAN Q, LIU H, et al. Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering [J]. Nanoscale, 2016, 8(34): 15689-15695.
[18] 赵韦人, 孙长军, 张伟, 等. 磁场调制的水基四氧化三铁磁流体的光学透射率[J]. 广东工业大学学报, 2009, 26(4): 30-33.
ZHAO W R, SUN C J, ZHANG W, et al. Magnetic field-controlled transmission of aqueous Fe3O4 ferrofluids [J]. Journal of Guangdong University of Technology, 2009, 26(4): 30-33.
[19] FU Z, SHEN Z, FAN Q, et al. Preparation of multi-functional magnetic-plasmonic nanocomposite for adsorption and detection of thiram using SERS [J]. Journal of Hazardous Materials, 2020, 392(15): 122356.
[20] XU J, DU J, JING C, et al. Facile detection of polycyclic aromatic hydrocarbons by a surface-enhanced Raman scattering sensor based on the Au coffee ring effect[J]. ACS Applied Materials & Interfaces, 2014, 6(9) : 6891-6897.
[21] ZHANG C H, ZHU J, LI J J, et al. Small and sharp triangular silver nanoplates synthesized utilizing tiny triangular nuclei and their excellent SERS activity for selective detection of thiram residue in soil [J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17387-17398.
[22] THACKER V V, HERRMANN L O, SIGLE D O, et al. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering [J]. Nature Communications, 2014, 5(13): 3448.
[23] NIU W, CHUA Y A, ZHANG W, et al. Highly symmetric gold nanostars: crystallographic control and surface-enhanced Raman scattering property [J]. Journal of the American Chemical Society, 2015, 137(33): 10460-10463.
[24] LU G, FORBES T Z, HAES A J. SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size [J]. Analyst, 2016, 141(17): 5137-5143.
[25] KOYA A N, ZHU X, OHANNESIAN N, et al. Nanoporous metals: from plasmonic properties to applications in enhanced spectroscopy and photocatalysis [J]. ACS Nano, 2021, 15(4): 6038-6060.
[26] LIU G, LI K, ZHANG Y, et al. A facile periodic porous Au nanoparticle array with high-density and built-in hotspots for SERS analysis [J]. Applied Surface Science, 2020, 527: 146807.
[27] MANDAL M, RANJAN JANA N, KUNDU S, et al. Synthesis of Aucore-Agshell type bimetallic nanoparticles for single molecule detection in solution by SERS method [J]. Journal of Nanoparticle Research, 2004, 6: 53-56.
[28] GAO C, HU Y, WANG M, et al. Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au [J]. Journal of the American Chemical Society, 2014, 136(20): 7474-7479.
[29] YAN Y, RADU A I, RAO W, et al. Mesoscopically bicontinuous Ag-Au hybrid nanosponges with tunable plasmon resonances as bottom-up substrates for surface-enhanced Raman spectroscopy (SERS) [J]. Chemistry of Materials, 2016, 28: 7673-7682.
[30] TANG H, MENG G, LI Z, et al. Hexagonally arranged arrays of urchin-like Ag hemispheres decorated with Ag nanoparticles for surface-enhanced Raman scattering substrates [J]. Nano Research, 2015, 8(7): 2261-2270.
[31] WU G, CAO F, ZHAO P, et al. Novel periodic bilayer Au nanostructures for ultrasensitive surface-enhanced Raman spectroscopy [J]. Advanced Materials Interfaces, 2018, 5(20): 1800820.
[32] 蒋力立, 唐新桂, 唐振方. 退火温度对锆酸铅薄膜光学性能的影响[J]. 广东工业大学学报, 2005, 22(1): 7-9.
JIANG L L, TANG X G, TANG Z F. Effect of annealing temperature on the optical properties of PbZrO3 thin films [J]. Journal of Guangdong University of Technology, 2005, 22(1): 7-9.
[33] PALIK E D. Handbook of optical constants of solids [M]. Boston: Academic Press, 1997: 189-190.
[34] RIOUX D, S VALLIÈRES, BESNER S, et al. An analytic model for the dielectric function of Au, Ag, and their alloys [J]. Advanced Optical Materials, 2014, 2(2): 176-182.
[1] 胡晓敏, 许万森, 段宇晖, 李敏. 基于智能优化的协作治疗调度算法[J]. 广东工业大学学报, 2023, 40(05): 21-33.
[2] 杨戈, 李萍. 表面增强拉曼散射与分子印迹技术快速检测痕量辛基酚的试验研究[J]. 广东工业大学学报, 2023, 40(05): 113-116.
[3] 肖志贤, 林福民. 基于两垂直方向虚拟平移的波达方向判定算法[J]. 广东工业大学学报, 2016, 33(01): 45-50.
[4] 张浩, 龙建军, 邸鹏飞. 海底冷泉渗漏气泡-海水两相介质均匀化方法和实验研究[J]. 广东工业大学学报, 2015, 32(04): 72-76.
[5] 张浩荣, 陈平华, 熊建斌. 基于蚁群模拟退火算法的云环境任务调度[J]. 广东工业大学学报, 2014, 31(3): 77-82.
[6] 李新喜, 袁晓娇, 张国庆, 张新河, 张磊. 锂离子电池硅/石墨复合负极材料的制备及性能研究[J]. 广东工业大学学报, 2014, 31(2): 27-31.
[7] 张康,苏成悦,付倩,薛涛,张春华. 基于均匀照明的光学器件研究[J]. 广东工业大学学报, 2013, 30(1): 87-91.
[8] 吴加荣. 讨论Burgers方程的概率空间与特征正交空间的最小平均距离问题[J]. 广东工业大学学报, 2012, 29(4): 72-76.
[9] 杨洪镅1,2. 强夯法在湿陷性黄土地基中的应用[J]. 广东工业大学学报, 2012, 29(1): 15-18.
[10] 张小玲1 , 刘海林2 , 李学强3. 基于模拟退火的自适应调节位置区数目的位置区规划[J]. 广东工业大学学报, 2010, 27(4): 28-31.
[11] 邹庆胜, 汪仁煌, 明俊峰. 基于机器视觉的瓷砖多参数分类系统的设计[J]. 广东工业大学学报, 2010, 27(4): 46-49.
[12] 李凌宇, 郭贵法, 许锦标. 基于模拟退火遗传算法的PID参数整定与优化[J]. 广东工业大学学报, 2010, 27(2): 80-83.
[13] 王海龙1 , 彭美春1 , 王贤烽2. 生物柴油掺烧比的优化研究[J]. 广东工业大学学报, 2010, 27(1): 33-38.
[14] 杨晚生; 张艳梅; 张吉光; . 新型静压式送风道空气动力性能的实验研究[J]. 广东工业大学学报, 2004, 21(2): 81-85.
[15] 刘海林; 滕少华; 刘永清; . 强化局部搜索能力的遗传算法[J]. 广东工业大学学报, 2002, 19(4): 13-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!