广东工业大学学报

• •    

基于事件触发的多智能体系统差分隐私保护跟踪控制

谢光强, 胡明昱, 李杨   

  1. 广东工业大学 计算机学院, 广东 广州 510006
  • 收稿日期:2024-02-05 出版日期:2024-09-27 发布日期:2024-09-27
  • 通信作者: 李杨(1980–),女,教授,博士,主要研究方向为多智能体、差分隐私保护,E-mail:liyang@gdut.edu.cn
  • 作者简介:谢光强(1979–),男,教授,博士,主要研究方向为多智能体、智能体控制,E-mail:xiegq@gdut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(62006047,618760439);广东省重点研发项目(2021B0101220004)

Event-triggered Differential Privacy Protection Tracking Control

Xie Guang-qiang, Hu Ming-yu, Li Yang   

  1. School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2024-02-05 Online:2024-09-27 Published:2024-09-27

摘要: 为了应对传统跟踪控制方法可能引起的窃听者攻击风险,多智能体系统跟踪控制研究需要考虑隐私保护问题。本文在同时存在领导者与跟随者的多智能体系统中,针对跟踪控制隐私保护问题,提出了基于事件触发的分布式差分隐私保护跟踪控制方法(Event-triggered Distributed Differential Privacy Protection Tracking Control, EDPTC)。该方法旨在时刻保障领导者与跟随者的状态隐私,同时实现均方跟踪。考虑到领导者与跟随者状态更新的差异,基于敏感度上界定理,分别设计了适应各自特点的隐私保护机制:跟随者的递减噪声机制(The Decreasing Noise Mechanism of Followers, DNMF) 和领导者的随机噪声机制(The Random Noise Mechanism of Leaders, RNML)。此外,为减少随机噪声对控制效果的影响,引入领导者状态估计算法,并设计分布式事件触发器以降低通信频率。通过矩阵分析和概率论,证明了EDPTC的隐私性并推导出了其实现均方跟踪的充分条件。最后,通过一系列数值仿真验证了方法的有效性。

关键词: 多智能体系统, 跟踪控制, 差分隐私保护, 事件触发

Abstract: To counter the risk of eavesdropper attacks inherent in traditional tracking control methods, research on tracking control in multi-agent systems must incorporate privacy protection considerations. This study introduces an event-triggered distributed differential privacy protection tracking control (EDPTC) method in multi-agent systems featuring both leaders and followers, aimed at addressing privacy protection issues in tracking control. The method is designed to ensure the privacy of the states of leaders and followers at all times while achieving mean square tracking. Given the differences in state updates between leaders and followers, privacy protection mechanisms tailored to each party are developed based on the sensitivity upper bound theorem: the decreasing noise mechanism for followers (DNMF) and the random noise mechanism for leaders (RNML) . Moreover, to minimize the impact of random noise on control performance, a leader state estimation algorithm is introduced, and a distributed event trigger is designed to reduce the communication frequency. Additionally, through matrix analysis and probability theory, the privacy of the EDPTC is proven, and sufficient conditions for achieving mean square tracking are derived. Finally, a series of numerical simulations validate the effectiveness of the proposed method.

Key words: multi-agent system, tracking control, differential privacy protection, event-triggered strategy

中图分类号: 

  • TP391
[1] AMIRKHANI A, BARSHOOI AH. Consensus in multi-agent systems: a review [J]. Artificial Intelligence Review, 2022, 55(5): 3897-3935.
[2] WANG S, WAN J, ZHANG D, et al. Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination [J]. Computer Networks, 2016, 101: 158-168.
[3] XIE G, XU H, LI Y, et al. Fast distributed consensus seeking in large-scale and high-density multi-agent systems with connectivity maintenance [J]. Information Sciences, 2022, 608: 1010-1028.
[4] MAZZARINO P R, MACII A, BOTTACCIOLI L, et al. A multi-agent framework for smart grid simulations: strategies for power-to-heat flexibility management in residential context [J]. Sustainable Energy, Grids and Networks, 2023, 34: 101072.
[5] HONG Y, CHEN G, BUSHNELL L. Distributed observers design for leader-following control of multi-agent networks [J]. Automatica, 2008, 44(3): 846-850.
[6] AZARBAHRAM A, AMINI A, PARIZ N. Event-triggered tracking formation of networked nonlinear intelligent transportation systems surrounded by random disturbances [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21959-21970.
[7] BALBO F, MANDIAU R, ZARGAYOUNA M. Extended review of multi-agent solutions to advanced public transportation systems challenges[J]. Public Transport, 2023: 1-28.
[8] 谢光强, 赵俊伟, 李杨, 等. 基于多集群系统的车辆协同换道控制[J]. 广东工业大学学报, 2021, 38(5): 1-9.
XIE G Q, ZHAO J W, LI Y, et al. Cooperative lane-changing based on multi-cluster system [J]. Journal of Guangdong University of Technology, 2021, 38(5): 1-9.
[9] ZHANG D, FENG G, SHI Y, et al. Physical safety and cyber security analysis of multi-agent systems: a survey of recent advances [J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(2): 319-333.
[10] GONG Y, XUE H, PAN Y, et al. Distributed event-triggered tracking consensus control for privacy preservation in multi-agent systems with denial-of-service attacks [J]. International Journal of Adaptive Control and Signal Processing, 2022, 36(8): 1860-1878.
[11] DWORK C. Differential privacy[C]//Automata, Languages and Programming: 33rd International Colloquium.Venice: Springer Berlin Heidelberg, 2006: 1-12.
[12] HUANG Z, MITRA S, DULLERUD G. Differentially private iterative synchronous consensus[C]// In Proceedings of the 2012 ACM Workshop on Privacy in the Electronic Society (WPES '12). New York: ACM, 2012: 81-90.
[13] NOZARI E, TALLAPRAGADA P, CORTÉS J. Differentially private average consensus: obstructions, trade-offs, and optimal algorithm design [J]. Automatica, 2017, 81: 221-231.
[14] GAO L, DENG S, REN W. Differentially private consensus with an event-triggered mechanism [J]. IEEE Transactions on Control of Network Systems, 2018, 6(1): 60-71.
[15] ZHA J, HAN L, DONG X, et al. Privacy-preserving push-sum distributed cubature information filter for nonlinear target tracking with switching directed topologies [J]. ISA Transactions, 2023, 136: 16-30.
[16] GUSRIALDI A. Resilient and privacy-preserving leader-follower consensus in presence of cyber-attacks [J]. IEEE Control Systems Letters, 2023, 7: 3211-3216.
[17] XIE G, CHEN J, LI Y. Hybrid-order network consensus for distributed multi-agent systems [J]. Journal of Artificial Intelligence Research, 2021, 70: 389-407.
[18] ZHANG P, LIU T, CHEN J, et al. Recent developments in event-triggered control of nonlinear systems: anoverview [J]. Unmanned Systems, 2023, 11(1): 27-56.
[19] XIA L, LI Q, SONG R. Adaptive event-triggered average tracking control with activable event-triggering mechanisms [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(10): 6067-6079.
[20] HUANG Y, LIU Y. Practical tracking via adaptive event-triggered feedback for uncertain nonlinear systems [J]. IEEE Transactions on Automatic Control, 2019, 64(9): 3920-3927.
[21] CORTÉS J, DULLERUD G E, HAN S, et al. Differential privacy in control and network systems[C]// 2016 IEEE 55th Conference on Decision and Control (CDC) , Las Vegas: IEEE, 2016: 4252-4272.
[22] WANG Y, LAM J, LIN H. Consensus of linear multivariable discrete-time multiagent systems: differential privacy perspective [J]. IEEE Transactions on Cybernetics, 2022, 52(12): 13915-13926.
[23] REN W, BEARD R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies [J]. IEEE Transactions on Automatic Control, 2005, 50(5): 655-661.
[24] HU J, HONG Y. Leader-following coordination of multi-agent systems with coupling time delays [J]. Physica A: Statistical Mechanics and its Applications, 2007, 374(2): 853-863.
[1] 谢光强, 万梓坤, 李杨. 基于分层邻域选择的切换拓扑多智能体系统一致性协议[J]. 广东工业大学学报, 2024, 41(04): 44-51.
[2] 陈应瑟, 彭世国, 王永华. 动态事件触发脉冲机制下多智能体系统的拟一致性[J]. 广东工业大学学报, 2024, 41(04): 52-60.
[3] 胡然, 彭世国. 基于脉冲观测器的多智能体系统的领导跟随一致性[J]. 广东工业大学学报, 2023, 40(05): 88-93.
[4] 谷志华, 彭世国, 黄昱嘉, 冯万典, 曾梓贤. 基于事件触发脉冲控制的具有ROUs和RONs的非线性多智能体系统的领导跟随一致性研究[J]. 广东工业大学学报, 2023, 40(01): 50-55.
[5] 谢光强, 许浩然, 李杨, 陈广福. 基于多智能体强化学习的社交网络舆情增强一致性方法[J]. 广东工业大学学报, 2022, 39(06): 36-43.
[6] 杨翊卓, 代伟. 事件触发机制下的工业过程多速率模型预测控制方法[J]. 广东工业大学学报, 2022, 39(05): 68-74.
[7] 曲燊, 车伟伟. FDI攻击下非线性多智能体系统分布式无模型自适应控制[J]. 广东工业大学学报, 2022, 39(05): 75-82.
[8] 刘建华, 李佳慧, 刘小斌, 穆树娟, 董宏丽. 事件触发机制下的多速率多智能体系统非脆弱一致性控制[J]. 广东工业大学学报, 2022, 39(05): 102-111.
[9] 杨文静, 夏建伟. 基于事件触发的大规模互联非线性系统的自适应分散漏斗控制[J]. 广东工业大学学报, 2022, 39(05): 137-144.
[10] 曾梓贤, 彭世国, 黄昱嘉, 谷志华, 冯万典. 两种不同脉冲欺骗攻击下随机多智能体系统的均方拟一致性[J]. 广东工业大学学报, 2022, 39(01): 71-77.
[11] 陈辞, 谢立华. 具有指定收敛速度的离散系统鲁棒跟踪数据驱动设计[J]. 广东工业大学学报, 2021, 38(06): 29-34.
[12] 谢光强, 赵俊伟, 李杨, 许浩然. 基于多集群系统的车辆协同换道控制[J]. 广东工业大学学报, 2021, 38(05): 1-9.
[13] 张弘烨, 彭世国. 基于模型简化法的含有随机时延的多智能体系统一致性研究[J]. 广东工业大学学报, 2019, 36(02): 86-90,96.
[14] 张振华, 彭世国. 二阶多智能体系统拓扑切换下的领导跟随一致性[J]. 广东工业大学学报, 2018, 35(02): 75-80.
[15] 罗贺富, 彭世国. 多时变时滞的多智能体系统的分布式编队控制[J]. 广东工业大学学报, 2017, 34(04): 89-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!