广东工业大学学报 ›› 2017, Vol. 34 ›› Issue (04): 89-96.doi: 10.12052/gdutxb.160104

• 综合研究 • 上一篇    下一篇

多时变时滞的多智能体系统的分布式编队控制

罗贺富, 彭世国   

  1. 广东工业大学 自动化学院, 广东 广州 510006
  • 收稿日期:2016-08-05 出版日期:2017-07-09 发布日期:2017-07-09
  • 作者简介:罗贺富(1991–),男,硕士研究生,主要研究方向为非线性系统、多智能体系统、鲁棒控制.E-mail:luohefu@163.com
  • 基金资助:

    国家自然科学基金资助项目(61374081);广东省自然科学基金资助项目(S2013010013034)

Distributed Formation Control of Multi-agent Systems with Coupling Time-varying Delays

Luo He-fu, Peng Shi-guo   

  1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2016-08-05 Online:2017-07-09 Published:2017-07-09

摘要:

在联合连通的切换拓扑结构下,首次研究具有多时变时滞的二阶多智能体系统的编队控制问题.设计智能体分布式编队控制协议,通过模型变换并运用Lyapunov-Krasovskii理论分析系统的稳定性,以线性矩阵不等式(LMIs)的形式给出了多智能体系统实现稳定编队的充分条件.分析具有环形联合连通拓扑结构的系统的优越性,并通过仿真实验来验证算法的正确性和有效性.研究结果表明,只需在联合连通的通讯拓扑结构下,提出的方法就能使得系统实现理想的速度和稳定的编队,并且允许系统存在多个更大的时变时延.

关键词: 多智能体系统, 编队控制, 环形联合连通, 多时变时滞

Abstract:

Formation control problem of second-order multi-agent systems with coupling time-varying delays and switching topologies is firstly investigated in this research. A distributed formation control protocol is designed based on consensus theory. By introducing model transformation method and Lyapunov-Krasovskii theory, some sufficient conditions in terms of linear matrix inequalities (LMIs) are given for stable formation control of multi-agent systems and then the priority of a system with circular jointly-connected topologies is analyzed. Finally, simulation results are provided to verify the validity and effectiveness of our theoretical results. The research shows that multi-agent systems with longer time-varying delays can achieve expected stable formation as well as desirable velocity just under a jointly-connected topology.

Key words: multi-agent systems, formation control, circular jointly-connected topologies, coupling time-varying delays, switching topology

中图分类号: 

  • TP273

[1] YAN W S, FANG X P, LI J B. Formation optimization for AUV localization with range-dependent measurements noise [J]. IEEE Communications Letters, 2014, 18(9): 1579-1582.
[2] DONG X W, YU B C, SHI Z Y, et al. Time-varying formation control for unmanned aerial vehicles theories and applications [J]. IEEE Transactions on Control System. Technology, 2015, 23(1): 340-348.
[3] OIKAWA R, TAKIMOTO M, KAMBAYASHI Y. Distributed formation control for swarm robots using mobile agents [C]// 201510th Jubilee IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI): IEEE, 2015: 111-16.
[4] OIKAWA R, TAKIMOTO M, KAMBAYASHI Y. Composing swarm robot formations based on their distributions using mobile agents [J]. Lecture Notes in Computer Science, 2016(9571): 108-120.
[5] 唐平, 杨宜民. 多智能体系统与足球机器人系统体系结构研究[J]. 广东工业大学学报, 2001, 18(4): 1-4.TANG P, YANG Y M. Study on multi-agent system and the structure of soccer game system [J]. Journal of Guangdong University of Technology, 2001, 18(4): 1-4.
[6] 陈璟华, 陈少华, 杨宜民, 等. 电力系统二级电压的多智能体协调控制[J]. 广东工业大学学报, 2003, 20(1): 28-31.CHEN J H, CHEN S H, YANG Y M, et al. Multi-agent Based on secondary voltage coordination control in power system [J]. Journal of Guangdong University of Technology, 2003, 20(1): 28-31.
[7] OH K K, PARK M C, AHN H S. A survey of multi-agent formation control [J]. Automatica, 2015(53): 424-440.
[8] BALCH T, ARKIN R C. Behavior-based formation control for multirobot teams [J]. IEEE Transactions on Robotics and Automation, 1998, 14(6): 926-939.
[9] LEWIS M A, TAN K H. High precision formation control of mobile robots using virtual structures[J]. Autonomous Robots, 1997, 4(4): 387-403.
[10] MO L P, NIU Y G, PAN T T. Consensus of heterogeneous multi-agent systems with switching jointly-connected interconnection [J]. Physica A, 2015(427): 132-140.
[11] MA L B, HE F H, SUN C P, et al. Finite time dynamical formation control of multi-agent systems [C]// Proceedings of the 34th Chinese Control Conference. [s.n.]: Hangzhou, China, 2015: 7398-7403.
[12] DONG X W, LIN Q D, ZHAO Q L, et al. Time-varying group formation analysis and design for second-order multi-agent systems with directed topologies [J]. Neurocomputing, 2016(205): 367-374.
[13] LUO X Y, HAN N N, GUAN X P. Leader-following consensus protocols for formation control of multi-agent network [J]. Journal of Systems Engineering and Electronics, 2011, 22(6): 991-997.
[14] XIA H, HUANG T Z, SHAO J L, et al. Formation control of second-order multiagent systems with time-varying delays [J]. Mathematical Problems in Engineering, 2014(2014): 1-8.
[15] LU X Q, AUSTIN F, CHEN SH. Formation control for second-order multi-agent systems with time-varying delays under directed topology [J]. Commun Nonlinear Sci Numer Simulat, 2012(17): 1382-1391.
[16] LI W X, CHEN Z Q, LIU Z X. Leader-following formation control for second-order multiagent systems with time-varying delay and nonlinear dynamics [J]. Nonlinear Dyn, 2013(72): 803-812.
[17] LIN P, JIA Y M. Consensus of a class of second-order multi-agent systems with time-delay and jointly-connected topologies [J]. IEEE Transactions on Automatic Control, 2010, 55(3): 778-785.
[18] WANG F, CHEN X, HE Y. Finite-time consensus of second-order multi-agent systems with jointly-connected topologies [C]// Proceedings of the 33rd Chinese Control Conference.[s.n.]: Nanjing, China, 2014: 1662-1667.
[19] 薛瑞彬, 宋建梅, 张民强. 具有时延及联合连通拓扑的多飞行器分布式协同编队飞行控制研究[J]. 兵工学报, 2015, 36(3): 493-502.XUE R B, SONG J M, ZHANG M Q. Research on distributed multi-vehicle coordinated formation flight control with coupling time-delay and jointly-connected topologies [J]. Acta Armamentarii, 2015, 36(3): 493-502.
[20] LIN P, JIA Y M. Multi-agent consensus with diverse time-delays and jointly-connected topologies [J]. Automatica, 2011, 47(4): 848-856.
[21] GODSIL C, ROYLE G. Algebraic Graph Theory [M]. New York: Springer-Verlag, 1997: 163-187.
[22] BOYD B, GHAOUI L E, FERON E, et al. Linear Matrix Inequalities in System and Control Theory [M]. Philadelphia: SIAM, 1994: 28-29.
[23] SUN Y, WANG L, XIE G. Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays [J]. Systems & Control Letters, 2008, 57(2): 175-183.
[24] HALE J K, VERDUYN LUNEL S M. Introduction to Functional Differential Equations [M]. New York: Springer, 1993: 99-115.
[25] 樊琼剑, 杨忠, 方挺, 等. 多无人机协同编队飞行控制的研究现状[J]. 航空学报, 2009, 30(4): 684-693.FAN Q J, Yang Z, Fang T, et al. Research status of coordinated formation flight control for multi-UAVs [J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 684-693.

[1] 谷志华, 彭世国, 黄昱嘉, 冯万典, 曾梓贤. 基于事件触发脉冲控制的具有ROUs和RONs的非线性多智能体系统的领导跟随一致性研究[J]. 广东工业大学学报, 2023, 40(01): 50-55.
[2] 谢光强, 许浩然, 李杨, 陈广福. 基于多智能体强化学习的社交网络舆情增强一致性方法[J]. 广东工业大学学报, 2022, 39(06): 36-43.
[3] 曲燊, 车伟伟. FDI攻击下非线性多智能体系统分布式无模型自适应控制[J]. 广东工业大学学报, 2022, 39(05): 75-82.
[4] 彭积广, 肖涵臻. 模型预测控制下多移动机器人的跟踪与避障[J]. 广东工业大学学报, 2022, 39(05): 93-101.
[5] 刘建华, 李佳慧, 刘小斌, 穆树娟, 董宏丽. 事件触发机制下的多速率多智能体系统非脆弱一致性控制[J]. 广东工业大学学报, 2022, 39(05): 102-111.
[6] 曾梓贤, 彭世国, 黄昱嘉, 谷志华, 冯万典. 两种不同脉冲欺骗攻击下随机多智能体系统的均方拟一致性[J]. 广东工业大学学报, 2022, 39(01): 71-77.
[7] 谢光强, 赵俊伟, 李杨, 许浩然. 基于多集群系统的车辆协同换道控制[J]. 广东工业大学学报, 2021, 38(05): 1-9.
[8] 张弘烨, 彭世国. 基于模型简化法的含有随机时延的多智能体系统一致性研究[J]. 广东工业大学学报, 2019, 36(02): 86-90,96.
[9] 张振华, 彭世国. 二阶多智能体系统拓扑切换下的领导跟随一致性[J]. 广东工业大学学报, 2018, 35(02): 75-80.
[10] 唐平; 杨宜民;. 多智能体系统与足球机器人系统体系结构研究[J]. 广东工业大学学报, 2001, 18(4): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!