广东工业大学学报 ›› 2017, Vol. 34 ›› Issue (05): 86-90.doi: 10.12052/gdutxb.170046

• 综合研究 • 上一篇    下一篇

锂离子电池成膜添加剂丙烯基-1,3-丙磺酸内酯还原机理研究

曾丽珍1, 郑雄文2   

  1. 1. 华南师范大学 实验中心;
    2. 华南师范大学 化学与环境学院, 广东 广州 510006
  • 收稿日期:2017-02-24 出版日期:2017-09-09 发布日期:2017-07-10
  • 作者简介:曾丽珍(1986-),女,实验师,主要研究方向为电化学功能材料.E-mail:janefish861210@126.com
  • 基金资助:
    国家自然科学基金资助项目(21273084);国家自然科学基金青年基金资助项目(21303061)

The Reductive Mechanism of Prop-1-ene-1,3-sultone as Solid Electrolyte Interphase Film-forming Additive for Lithium Ion Battery

Zeng Li-zhen1, Zheng Xiong-wen2   

  1. 1. Research Resources Center, South China Normal University;
    2. School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
  • Received:2017-02-24 Online:2017-09-09 Published:2017-07-10

摘要: 采用密度泛函理论方法研究了锂离子电池成膜添加剂丙烯基-1,3-丙磺酸内酯(PES)的还原机理.通过B3LYP/6-311++G (d,p)水平的密度函数理论与偏振连续模型(PCM)理论计算结果表明,PES的还原活性优于碳酸丙烯酯(PC),PES较PC优先通过所获得的前线分子轨道能量和电子亲和能被还原形成PES+e.由于PES+e的结构是不稳定的,易于通过破坏C1—O2或O2—S7键而自发重排形成PES-1或PES-2.通过振动频率分析和内反应坐标(IRC)方法优化和确认PES的过渡态(TS).使用自然键轨道(NBO)方法在DFT的B3LYP/6-311++G (d,p)水平上分析沿着最小能量路径(MEP)的稳定点的键顺序和原子电荷分布.基于结构,键顺序和电荷分布结果分析,负电荷大部分分布在PES+e中的—SO2基团上,因此PES+e的成膜机理经历C1—O2或O2—S7的断裂形成稳定的开环环状阴离子自由基(PES-1或PES-2).

关键词: 锂离子电池, 碳酸丙烯酯, PES, 还原机理, 密度泛函理论

Abstract: The mechanism for the reduction of Prop-1-ene-1,3-sultone (PES) on anode of lithium ion battery is understood by theoretical calculation at the B3LYP/6-311++G (d, p) level of density functional theory with the polarized continuum models (PCM). It is found that PES in solvent is reduced prior to PC to form PES+e by the obtained frontier molecular orbital energy and electron affinity. The structure of PES+e is unstable, and prone to a spontaneous rearrangement to form PES-1 or PES-2 by the breaking of C1-O2 or O2-S7. The transition state (TS) is optimized and confirmed by vibrational frequency analysis and intrinsic reaction coordinate (IRC) method. The bond orders and atomic charge distribution of the stable points along the minimum energy path (MEP) are analyzed using the natural bond orbital (NBO) method at the B3LYP/6-311++G (d, p) level of DFT. The negative charge is mostly distribution on -SO2 group in PES+e, based on the structures, bond order and Charge distribution analyses, and it is known that PES+e experiences the breaking of C1-O2 or O2-S7 to form a stable open cyclic anion radical (PES-1 or PES-2).

Key words: lithium ion battery, propylene carbonate, prop-1-ene-1,3-sultone, reduction mechanism, density functional theory (DFT)

中图分类号: 

  • TM912
[1]TARASCON J M,ARMAND M.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414(6861):359-367. [2]ARMAND M,TARASCON J M.Building better batteries[J].Nature,2008,451:652-657. [3]李新喜,袁晓娇,张国庆,等.锂离子电池硅/石墨复合负极材料的制备及性能研究[J].广东工业大学学报,2014,31(2):27-31.LI X X,YUAN X J,ZHANG G Q,et al.Preparation and properties of silicon/graphite composites as anode materials for lithium batteries[J].Journal of Guangdong University of Technology,2014,31(2):27-31. [4]DEDRYVÈRE R,MARTINEZ H,LEROY S,et al.Surface film formation on electrodes in a LiCoO<sub>2</sub>/graphite cell:A step by step XPS study[J].Journal of Power Sources,2007,174:462-468. [5]XU M Q,ZHOU L,XING L D,et al.Experimental and theoretical investigations on 4,5-dimethyl-[1,3]dioxol-2-one as solid electrolyte interface forming additive for lithium ion batteries[J].Electrochimistry Acta,2010,55:6743-6748. [6]XING L D,WANG C Y,LI W S,et al.Theoretical insight into oxidative decomposition of propylene carbonate in the lithium ion battery[J].Journal of Physical Chemistry B,2009,113:5181-5187. [7]XING L D,WANG C Y,XU M Q,et al.Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery[J].Journal of Power Sources,2009,189:689-692. [8]HIRAYAMA M,SAKAMOTO K,HIRAIDE T,et al.Characterization of electrode/electrolyte interface using in situ X-ray reflectometry and LiNi<sub>0.8</sub>Co<sub>0.2</sub>O<sub>2</sub> epitaxial film electrode synthesized by pulsed laser deposition method[J].Electrochimical Acta,2007,53:871-881. [9]XU K.Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries[J].Chemical Reviews,2004,104:4303-4417. [10]XU M Q,LI W S,ZUO X X,et al.Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive[J].Journal of Power Sources,2007,174:705-710. [11]DEY A N,SULLIVAN B P.The electrochemical decomposition of propylene carbonate on Graphite[J].Journal of the Electrochemical Society,1970,117:222-224. [12]WRODNIGG G H,BESENHARD J O,WINTER M.Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes[J].Journal of the Electrochemical Society,1999,146:470-472. [13]WRODNIGG G H,WRODNIGG T M,BESENHARD J O,et al.Propylene sulfite as film-forming electrolyte additive in lithium ion batteries[J].Electrochemistry Communications,1999,1:148-150. [14]MCMILLAN R,SLEGR H,SHU Z X,et al.Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes[J].Journal of Power Sources,1999,81:20-26. [15]WANG Y,NAKAMURA S,TASAKI K,et al.Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries:how does vinylene carbonate play its role as an electrolyte additive[J].Journal of the American Chemical Society,2002,124:4408-4421. [16]XU M Q,ZHOU L,DONG Y N,et al.Improved perlormance of high voltage graphite/LiNi0.5Mn4 batteries with added lithium tetramethyl borate[J].ECS Electrochemistry Letters,2015,4(8):83-86. [17]LI J,XING Li D,ZHANG R Q,et al.Tris (trimethylsilyl) borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte[J].Journal of Power Sources,2015,285:360-366. [18]ZUO X X,FAN C J,LIU J S,et al.Effect of tris (trimethylsilyl) borate on the high voltage capacity retention of LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub>/graphite cells[J].Journal of Power Sources,2013,229(3):308-312. [19]WANG Z X,HU Y S,CHEN L Q.Some studies on electrolytes for lithium ion batteries[J].Journal of Power Sources,2005,146:51-57. [20]OESTEN R,HEIDER U,SCHMIDT M.Advanced electrolytes[J].Solid State Ionics,2002,148:391-397. [21]HU Y S,KONG W H,LI H,et al.Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries[J].Electrochemistry Communications,2004,6:126-131. [22]XU M Q,LI W S,LUCHT B L.Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries[J].Journal of Power Sources,2009,193:804-809. [23]LEE H,CHOI S,CHOI S,et al.SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5 V Li-ion batteries[J].Electrochemistry Communications,2007,9:801-806. [24]LI B,XU M Q,LI T T,et al.Prop-1-ene-1,3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries[J].Electrochemistry Communications,2012,17:92-95. [25]LI B,XU M Q,LI B Z,et al.Properties of solid electrolyte interphase formed by prop-1-ene-1,3-sultone on graphite anode of Li-ion batteries[J].Electrochimical Acta,2013,105:1-6. [26]LI B,WANG Y Q,RONG H B,et al.A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn<sub>2</sub>O<sub>4</sub>/graphite battery[J].Journal of Materials Chemistry A,2013,1:12954-12961. [27]LI B,WANG Y Q,TU W Q,et al.Improving cyclic stability of lithium nickel manganese oxide cathode for high voltage lithium ion battery by modifying electrode/electrolyte interface with electrolyte additive[J].Electrochimical Acta,2014,147:636-642. [28]XING L D,LI W S,WANG C Y,et al.Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium-ion battery use[J].Journal of Physical Chemistry B,2009,113:16596-16602. [29]XING L D,LI W S,XU M Q,et al.The reductive mechanism of ethylene sulfite as solid electrolyte interphase film-forming additive for lithium ion battery[J].Journal of Power Sources,2011,196:7044-7047. [30]TOMASI J,MENNUCCI B,CAMM R.Quantum mechanical continuum salvation models[J].Chemical Reviews,2005,105:2999-3093. [31]WEINHOLD F.Natural bond orbitals and extensions of localized bonding concepts[J].Chemistry Education Research and Practice,2001,2:91-104.
[1] 李越珠, 黄兴文, 廖松义, 刘屹东, 闵永刚. 锂离子电池高镍三元正极材料LiNi0.8Co0.1Mn0.1O2研究进展[J]. 广东工业大学学报, 2021, 38(05): 68-74.
[2] 李新喜, 袁晓娇, 张国庆, 张新河, 张磊. 锂离子电池硅/石墨复合负极材料的制备及性能研究[J]. 广东工业大学学报, 2014, 31(2): 27-31.
[3] 林家勇; 胡义华; 陈仁; 陈雪花; 武华; . B_mN_n和B_mN_n~-团簇结构及其光电子能谱的研究[J]. 广东工业大学学报, 2007, 24(1): 9-13.
[4] 张兴初; 胡义华; 吴怀选; 武华; . 胸腺嘧啶与Ca~+复合物的稳定结构及电荷分布[J]. 广东工业大学学报, 2005, 22(1): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!