广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (04): 32-36.doi: 10.12052/gdutxb.170179

• 综合研究 • 上一篇    下一篇

对数线性模型下基于φ-散度测度的均值滑动检验

金应华, 向思源   

  1. 广东工业大学 应用数学学院, 广东 广州 510520
  • 收稿日期:2018-01-02 出版日期:2018-07-09 发布日期:2018-05-24
  • 作者简介:金应华(1982-),男,讲师,博士,主要研究方向为对数线性模型和分位数回归模型.
  • 基金资助:
    国家自然科学基金资助项目(11401114);广东省自然科学基金资助项目(S2012040007622)

Mean-shift Test Based on φ-divergence Measure for Log-linear Model

Jin Ying-hua, Xiang Si-yuan   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2018-01-02 Online:2018-07-09 Published:2018-05-24

摘要: 研究了对数线性模型的均值滑动检验.基于φ-散度和最小φ-散度估计提出了3类检验统计量,它们是似然比检验统计量和Pearson检验统计量的推广.研究了这3类统计量的渐近分布,并用此理论结果分析了一组实际数据.最后通过模拟研究表明,在小样本量下,这3类统计量中有比似然比检验统计量和Pearson检验统计量表现更好的统计量.

关键词: 对数线性模型, φ-散度, 最小φ-散度估计, 均值滑动检验

Abstract: The mean-shift test under the log-linear mode is studied. Based on φ-divergence and the minimum φ-divergence estimator, three families of test statistic, which are a generalization of log-likelihood ratio statistic and the Pearson statistic, are proposed. Their asymptotic distribution is presented while they are used to analyze some empirical data. A simulation study is also conducted. And the outcome shows that there are alternatives among these three families of test statistic as good as (or even better than) the log-likelihood ratio statistic and the Pearson statistic under finite sample size.

Key words: log-linear model, φ-divergence, minimum φ-divergence estimator, mean-shift test

中图分类号: 

  • O175
[1] PARDO L, PARDO M C. Nonadditivity in log-linear models using φ-divergence and MLEs[J]. Journal of Statistical Planning and Inference, 2005, 127(1-2):237-252.
[2] JIN Y H, MING R X, WU Y H. Nonadditivity in log-linear model using φ-divergence and MφEs under product-multinomial sampling[J]. Journal of Statistical Planning and Inference, 2013, 143(2):356-367.
[3] CHRISTENSEN R. Loglinear model and logistic regression[M]. second ed. New York:Springer-Verlag, 1997.
[4] JIN Y H, WU Y H. Minimum φ-divergence estimator and hierarchical testing in loglinear models under product-multinomial sampling[J]. Journal of Statistical Planning and Inference, 2009, 139(10):3488-3500.
[5] ALI S M, SILVEY S D. A general class of coefficient of divergence of one distribution from another[J]. Journal of Royal Statistical Society, Series B, 1966, 28(1):131-142.
[6] CSISZAR I. Information type measures of dif-ference of probability distributions and indirect observations[J]. Studia Scientiarum Mathematicarum Hungarica, 1967, 2(2):299-318.
[7] CRESSIE N, READ T. Multinomial goodness-of-fit tests[J]. Journal of the Royal Statistical Society, 1984, 46(3):440-464.
[8] 陈静, 刘洋. 基于最小熵的流形学习排列方法[J]. 广东工业大学学报, 2015, 32(3):39-45.CHEN J, LIU Y. The minimum entropy alignment in manifold learning[J]. Journal of Guangdong University of Technology, 2015, 32(3):39-45.
[9] 陈璟华, 邱明晋, 郭经韬, 等. 模糊熵权法和CCPSO算法的含风电场电力系统多目标无功优化[J]. 广东工业大学学报, 2018, 35(1):35-40.CHEN J H, QIU M J, GUO J T, et al. Multi-objective Reactive power optimization in electric power system with wind farm based on fuzzy entropy weight method and CCPSO algorithm[J]. Journal of Guangdong University of Technology, 2018, 35(1):35-40.
[10] PARDO L, PARDO M C. Minimum power-divergence estimator in threeway contingency tables[J]. Journal of Statistical Computation and Simulation, 2003, 73(11):819-831.
[11] MORALES D, PARDO L, VAJDA I. Asymptotic divergence of estimates of discrete distribution[J]. Journal of Statistical Planning and Inference, 1995, 48(3):347-369.
[12] CRESSIE N, PARDO L. Model checking in log-linear models using φ-divergence and mles[J]. Journal of Statistical planning and inference, 2002, 103(1-2):437-453.
[13] CRESSIE N, PARDO L, PARDO M. Size and power consideration for testing log-linear models using φ-divergence test statistics[J]. Statistics Sinica, 2003, 13(2):555-570.
[14] AGRESTI A. Categorical data analysis[M]. New York:John Wiley, 1996.
[15] DALE J R. Asymptotic normality of goodness-of-fit statistics for sparse product multinomials[J]. Journal of the Royal Statistical Society Series. B, 1986, 48(1):48-59.
[16] MARTIN N, PARDO L. New families of estimators and test statistics in log-linear models[J]. Journal of Multivariate Analysis, 2008, 99(8):1590-1609.
[17] MARTIN N, MATA R, PARDO L. Phi-divergence statistics for the likelihood ratio order:An approach based on the log-linear models[J]. Journal of Multivariate Analysis, 2014, 130:387-408.
[18] 王松桂, 史建红, 尹素菊, 吴密霞. 线性模型引论[M]. 北京:科学出版社, 2004.
[1] 肖志涛. 几类广义Pexider方程的解[J]. 广东工业大学学报, 2022, 39(02): 72-75.
[2] 周云, 卫雪梅. 一个具有Robin自由边界的双曲肿瘤生长模型解的定性分析[J]. 广东工业大学学报, 2021, 38(02): 60-65.
[3] 黄慧敏, 郭承军. 一类脉冲随机微分方程解的稳定性[J]. 广东工业大学学报, 2020, 37(06): 56-62.
[4] 陈荣宁, 卫雪梅. 广义的Camassa-Holm方程的弱适定性[J]. 广东工业大学学报, 2020, 37(02): 80-86.
[5] 梁小珍, 卫雪梅. 结肠癌细胞代谢模型解的存在性[J]. 广东工业大学学报, 2019, 36(05): 38-42.
[6] 朱亚杰, 朱红波. 全空间RN上的渐近线性Schrödinger方程[J]. 广东工业大学学报, 2019, 36(02): 78-85.
[7] 陈美癸, 卫雪梅. 视网膜氧分布与脑红蛋白作用模型解的存在唯一性[J]. 广东工业大学学报, 2018, 35(05): 45-50.
[8] 陆宇. 一类四阶边值问题解的存在性[J]. 广东工业大学学报, 2014, 31(2): 69-73.
[9] 唐浩怡, 彭红云. 三维趋化系统全局弱解的存在性和渐近稳定性[J]. 广东工业大学学报, 2022, 39(01): 93-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!