广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (06): 99-104,110.doi: 10.12052/gdutxb.190004

• 综合研究 • 上一篇    下一篇

考虑环境温度变工况的分液冷凝有机朗肯循环系统优化设计

邱观福, 罗向龙, 陈健勇, 杨智, 陈颖   

  1. 广东工业大学 材料与能源学院, 广东 广州 510006
  • 收稿日期:2019-01-08 出版日期:2019-11-28 发布日期:2019-11-28
  • 通信作者: 罗向龙(1978-),男,教授,主要研究方向为热力系统集成与优化、换热器强化与优化.E-mail:lxl-dte@gdut.edu.cn E-mail:lxl-dte@gdut.edu.cn
  • 作者简介:邱观福(1993-),男,硕士研究生,主要研究方向为低温余热系统优化.
  • 基金资助:
    国家自然科学基金资助项目(51876043,51736005)

An Off-design Optimization of Liquid Separation Condenser-based Organic Rankine Cycle Under Different Ambient Temperature

Qiu Guan-fu, Luo Xiang-long, Chen Jian-yong, Yang Zhi, Chen Ying   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-01-08 Online:2019-11-28 Published:2019-11-28

摘要: 有机朗肯循环是最具潜力的低品位热-功转换技术之一,设计工况的选择和考虑变工况的系统设计和运行方法对降低系统全年发电成本或提高系统年均发电效率有重要意义.本文建立了余热驱动有机朗肯循环系统设备结构参数和系统运行参数同步优化模型并提出了求解策略;考虑到环境温度随季节变化的特性,选取4个环境温度作为设计工况,分别得到了4个设计工况下最优设计方案,基于4个设计结构优化全年运行方案,并比较不同系统配置下全年变工况的综合性能.研究结果表明:同时优化系统参数及设备结构参数对提高系统性能至关重要;环境设计温度不同,设计的最优结构和运行方案不同,可根据多个变工况环境温度对系统进行优化设计,优化全年运行方案.

关键词: 余热回收, 有机朗肯循环, 变工况, 系统全年性能

Abstract: Organic Rankine cycle (ORC) is one of the most potential low-grade thermal-power conversion technologies, and the selection of design conditions and the system design and operation method considering variable conditions are of great significance for reducing the annual power generation cost or improving the annual power generation efficiency of the system. A synchronous optimization model of equipment structure parameters and system operation parameters of waste heat driven ORC system is established and a solution strategy proposed. Considering the characteristics of ambient temperature changing with seasons, four environmental temperatures are selected as the design conditions, the optimal design scheme is obtained respectively, based on the four design structures, while the annual operation scheme optimized, and the synthesis of annual variable conditions under different system configurations compared. The results show that it is important to optimize the system parameters and equipment structure parameters simultaneously to improve the system performance. With different environmental design temperatures, the optimal design structure and operation scheme are different. The system can be optimized according to the environmental temperature of multiple variable working conditions to optimize the annual operation scheme.

Key words: waste heat recovery, organic Rankine cycle, off-design, annual performance of the system

中图分类号: 

  • TK121
[1] VÉLEZ F, SEGOVIA J J, MARTÍN M C, et al. A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation[J]. Renewable and Sustainable Energy Reviews, 2012, 16(6):4175-4189
[2] LEE K M, KUO S F, CHIEN M L, et al. Parameters analysis on organic Rankine cycle energy recovery system[J]. Energy Conversion and Management, 1988, 28(2):129-136
[3] MADHAWA, HETTIARACHCHI H D, GOLUBOVIC M, et al. Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources[J]. Energy, 2007, 32:1698-1706
[4] WEI D, LU X, LU Z, et al. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery[J]. Energy Conversion and Management, 2007, 48(4):1113-1119
[5] DAI Y, WANG J, LIN G. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery[J]. Energy Conversion and Management, 2009, 50(3):576-582
[6] GU W, WENG Y, WANG Y J, et al. Theoretical and experimental investigation of an organic Rankine cycle for a waste heat recovery system[J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and Energy, 2009, 223(5):523-533
[7] ZHANG J, ZHOU Y, WANG R, et al. Modeling and constrained multivariable predictive control for ORC (organic Rankine cycle) based waste heat energy conversion systems[J]. Energy, 2014, 66(4):128-138
[8] ZHANG J, ZHOU Y, LI Y, et al. Generalized predictive control applied in waste heat recovery power plants[J]. Applied Energy, 2013, 102(2):320-326
[9] LEE Y R, KUO C R, WANG C C. Transient response of a 50 kW organic Rankine cycle system[J]. Energy, 2012, 48(1):532-538
[10] LEE Y R, KUO C R, LIU C H, et al. Dynamic response of a 50 kW organic Rankine cycle system in association with evaporators[J]. Energies, 2014, 7(4):2436-2448
[11] QUOILIN S, AUMANN R, GRILL A, et al. Dynamic modeling and optimal control strategy of waste heat recovery organic rankine cycles[J]. Applied Energy, 2011, 88(6):2183-2190
[12] CASARTELLI D, BINOTTI M, SILVA P, et al. Power block off-design control strategies for indirect solar ORC cycles[J]. Energy Procedia, 2015, 69:1220-1230
[13] SUN K, TSENG C T, WONG S H, et al. Model predictive control for improving waste heat recovery in coke dry quenching processes[J]. Energy, 2015, 80:275-283
[14] HU D, ZHENG Y, WU Y, et al. Off-design performance comparison of an organic Rankine cycle under different control strategies[J]. Applied Energy, 2015, 156:268-279
[15] KOSMADAKIS G, MANOLAKOS D, PAPADAKIS G. Experimental investigation of a low-temperature organic Rankine cycle (ORC) engine under variable heat input operating at both subcritical and supercritical conditions[J]. Applied Thermal Engineering, 2016, 92:1-7
[16] KANDLIKAR S G. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes[J]. Journal of Heat Transfer, 1990, 112(1):219-228
[17] PATEL V K, RAO R V. Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique[J]. Applied Thermal Engineering, 2010, 30(11-12):1417-1425
[18] SINNOTT R K. Chemical engineering design:SI Edition[M]. Elsevier, 2009.
[19] YANG J, FAN A, LIU W, et al. Optimization of shell-and-tube heat exchangers conforming to TEMA standards with designs motivated by constructal theory[J]. Energy Conversion and Management, 2014, 78:468-476
[20] CHISHOLM D. Two phase flow in pipelines and heat exchangers[M]. 1983.
[21] LUO X L, YI Z T, ZHANG B J, et al. Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle[J]. Applied Energy, 2017, 185:1309-1323
[22] CAVALLINI A, COL D D, MANCIN S, et al. Condensation of pure and near-azeotropic refrigerants in microfin tubes:A new computational procedure[J]. International Journal of Refrigeration, 2009, 32(1):162-174
[23] KEDZIERSKI M A, GONCALVES J M. Horizontal convective condensation of alternative refrigerants within a micro-fin tube[J]. Journal of Enhanced Heat Transfer, 1999, 6(2):161-178
[24] COLLIER J G, THOME J R. Convective boiling and condensation[M]. Oxford:Oxford University Press, 1994.
[25] WANG C C, LEE W S, SHEU W J. A comparative study of compact enhanced fin-and-tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2001, 44(18):3565-3573
[26] WANG C C, LEE C J, CHANG C T, et al. Heat transfer and friction correlation for compact louvered fin-and-tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 1998, 42(11):1945-1956
[27] WANG C C, WEBB R L, CHI K Y. Data reduction for air-side performance of fin-and-tube heat exchangers[J]. Experimental Thermal and Fluid Science, 2000, 21(4):218-226
[28] BHATTACHARYYA D, SHAEIWITZ J A, BAILIE R C, et al. Analysis, synthesis and design of chemical processes[M]. New Jersey:Prentice Hall, 2012.
[1] 危由兴, 罗向龙, 胡凌锋, 陈健勇, 梁颖宗, 杨智, 陈颖. 基于时间序列聚合的有机朗肯循环系统优化方法[J]. 广东工业大学学报, 2022, 39(06): 98-106.
[2] 罗俊伟, 罗向龙, 郑晓生, 陈健勇, 梁颖宗, 杨智, 陈颖. 有机朗肯循环系统换热设备仿真研究[J]. 广东工业大学学报, 2022, 39(04): 128-134.
[3] 梁俊伟, 罗向龙, 杨智, 梁颖宗, 陈健勇, 陈颖. 基于PC-SAFT的混合工质筛选与有机朗肯循环系统优化[J]. 广东工业大学学报, 2022, 39(02): 91-98.
[4] 涂俊平, 黄计康, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 水平光滑管内R245fa轴向均匀沸腾传热特性实验研究[J]. 广东工业大学学报, 2020, 37(06): 71-77.
[5] 郑晓生, 罗俊伟, 卢沛, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 采用R1234ze(E)/R245fa的非共沸混合工质有机朗肯循环系统实验研究[J]. 广东工业大学学报, 2020, 37(03): 114-120.
[6] 王羽鹏, 罗向龙, 梁俊伟, 陈健勇, 杨智, 陈颖. 有机朗肯循环系统工质设计与系统参数的同步优化[J]. 广东工业大学学报, 2020, 37(01): 69-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!