广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (02): 80-86.doi: 10.12052/gdutxb.190053
陈荣宁, 卫雪梅
Chen Rong-ning, Wei Xue-mei
摘要: 本文主要研究广义的Camassa-Holm方程Cauchy问题当初值u0在空间H1(R)∩W1,∞(R)时解的弱适定性。首先运用特征线把广义的Camassa-Holm方程转化成类似常微分方程(Ordinary Differential Equation,ODE)的方程。其次运用ODE理论证明新方程解的局部存在唯一性。最后利用新方程与原方程的关系,证明原方程解的局部存在唯一性并且给出解对初值的弱连续依赖性。
中图分类号:
[1] GRAYSHAN K, HIMONAS A A. Equations with peakon traveling wave solutions[J]. Advances in Dynamical Systems and Applications, 2013, 8(2):217-232 [2] GUAN C X, WANG J M, MENG Y P. Weak well-posedness for a modified two-component Camassa-Holm system[J]. Nonlinear Analysis, 2019, 178:247-265 [3] GUAN C X, ZHU H. Well-posedness of a class of solutions to an integrable two-component Camassa-Holm system[J]. Journal of Mathematical Analysis and Applications, 2019, 470:413-433 [4] WEI L, QIAO Z J, WANG Y, ZHOU S M. Conserved quantities, Global existence and blow-up for a generalized CH equation[J]. Discrete and Continuous Dynamical Systems, 2017, 37(3):1733-1748 [5] TU X, YIN Z Y. Global weak solutions for a generalized Camassa-Holm equation[J]. Mathematische Nachrichten, 2018, 291(16):2457-2475 [6] GUAN C X. Uniqueness of global conservative weak solutions for the modified two-component Camassa-Holm system[J]. Journal of Evolution Equations, 2018, 18(2):1003-1024 [7] GUAN C X, KARLSEN K H, YIN Z Y. Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation[J]. Contemporary Mathematics, 2010, 526:199-220 [8] GUAN C X, YAN K, WEI X M. Lipschitz metric for the modified two-component Camassa-Holm system[J]. Analysis and Applications, 2018, 16(2):159-182 [9] GUAN C X, YIN Z Y. Global weak solutions for a modified two-component Camassa-Holm equation[J]. Annales de I'Institut Henri poincaré/Analyse Non Linéaire, 2011, 28(4):623-641 [10] GUAN C X, YIN Z Y. On the global weak solutions for a modified two-component Camassa-Holm equation[J]. Mathematische Nachrichten, 2013, 286(13):1287-1304 [11] BAROSTICHI R F, HIMONAS A A, PETRONILHO G. Global analyticity for a generalized Camassa-Holm equation and decay of the radius of spatical analyticity[J]. Journal of Differential Equations, 2017, 263(1):732-764 [12] HIMONAS A A, HOLLIMAN C. The Cauchy problem for a generalized Camassa-Holm equation[J]. Advances in Differential Equations, 2014, 19(1-2):161-200 [13] YAN W, LI Y S. The Cauchy problem for the modified two-component Camassa-Holm system in critical Besov Space[J]. Annales de I'Institut Henri poincaré/Analyse Non Linéaire, 2015, 32:443-469 [14] ZHOU S M. The Cauchy problem for a generalized b-equation with higher-order nonlinearities in critical besov spaces and weighted spaces[J]. Discrete and Continuous Dynamical Systems, 2014, 3-4(11):4967-4986 [15] LINARES F, PONCE G, SIDERIS T C. Properties of solutions to the Camassa-Holm equation on the line in a class containing the peakons[EB/OL]. (2016-12-2)[2019-04-07]. https://arxiv.org/abs/1609.06212. [16] CAMASSA R, HOLM D D. An integrable shallow water equation with peaked solutions[J]. Physical Review Letters, 1993, 71(11):1661-1664 [17] GIUSEPPE G,RAFFAELE V,SEBASTIAN W. Symmetry and Perturbation Theory[M]. Singapore:World Scientific, 1999:23-37. [18] NOVIKOV V. Generalizations of the Camassa-Holm equation[J]. Journal of Physics A:Mathematical and Theoretical, 2009, 42(34):2002-2015 |
[1] | 肖志涛. 几类广义Pexider方程的解[J]. 广东工业大学学报, 2022, 39(02): 72-75. |
[2] | 周云, 卫雪梅. 一个具有Robin自由边界的双曲肿瘤生长模型解的定性分析[J]. 广东工业大学学报, 2021, 38(02): 60-65. |
[3] | 黄慧敏, 郭承军. 一类脉冲随机微分方程解的稳定性[J]. 广东工业大学学报, 2020, 37(06): 56-62. |
[4] | 梁小珍, 卫雪梅. 结肠癌细胞代谢模型解的存在性[J]. 广东工业大学学报, 2019, 36(05): 38-42. |
[5] | 朱亚杰, 朱红波. 全空间RN上的渐近线性Schrödinger方程[J]. 广东工业大学学报, 2019, 36(02): 78-85. |
[6] | 陈美癸, 卫雪梅. 视网膜氧分布与脑红蛋白作用模型解的存在唯一性[J]. 广东工业大学学报, 2018, 35(05): 45-50. |
[7] | 金应华, 向思源. 对数线性模型下基于φ-散度测度的均值滑动检验[J]. 广东工业大学学报, 2018, 35(04): 32-36. |
[8] | 陆宇. 一类四阶边值问题解的存在性[J]. 广东工业大学学报, 2014, 31(2): 69-73. |
[9] | 唐浩怡, 彭红云. 三维趋化系统全局弱解的存在性和渐近稳定性[J]. 广东工业大学学报, 2022, 39(01): 93-98. |
|