广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (01): 97-103,110.doi: 10.12052/gdutxb.200024
廖子锋, 赵韦人, 黄浩, 宋静周
Liao Zi-feng, Zhao Wei-ren, Huang Hao, Song Jing-zhou
摘要: 为了开发新型的深红光或红外发光材料, 通过高温固相法在空气中合成了锰掺杂Ca14Zn6Al10O35:Mn荧光粉。采用X射线衍射、反射光谱、荧光光谱、荧光衰减寿命系统研究了该材料的晶体结构及发光性能。结果表明, 样品中同时存在着Mn4+和Mn5+的荧光发射, 前者在深红波段, 后者在近红外波段。当12.5%的Al离子被Mn离子替代时, Mn5+离子的发射达到最强。Mn5+离子发射是窄带发射, 峰值在
中图分类号:
[1] BRGOCH J, BORG C K, DENAULT K A, et al. An efficient, thermally stable cerium-based silicate phosphor for solid state white lighting [J]. Inorganic Chemistry, 2013, 52(14): 8010-8016. [2] HOERDER G J, SEIBALD M, BAUMANN D, et al. Sr[Li2Al2O2N2]: Eu2+—A high performance red phosphor to brighten the future [J]. Nature Communications, 2019, 10(1): 1-9. [3] 李飞, 夏志国. 固态照明用稀土荧光粉和无机量子点: 机遇与挑战[J]. 应用化学, 2018, 35(8): 859-870. LI F, XIA Z G. Rare earth doped phosphors and inorganic quantum dots for solid state lighting: opportunity and challenge [J]. Chinese Journal of Applied Chemistry, 2018, 35(8): 859-870. [4] ZHAO M, LIAO H X, MOLOKEEV M S, et al. Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition [J]. Light: Science & Applications, 2019, 8(1): 1-9. [5] 鲁重瑞, 赵韦人, 廖子锋, 等. 铕掺杂NASICON结构红色荧光粉制备和发光性能[J]. 广东工业大学学报, 2020, 37(1): 27-33. LU C R, ZHAO W R, LIAO Z F, et al. Preparation and Luminescence Properties of Eu3+ doped NASICON-based red phosphors [J]. Journal of Guangdong University of Technology, 2020, 37(1): 27-33. [6] 梁柏鑫, 易双萍, 胡耕樵, 等. 基于能量传递可调色度ZnNb2O6:Dy3+, Eu3+荧光粉的制备及其发光性能研究[J]. 广东工业大学学报, 2020, 37(1): 34-41. LIANG B X, YI S P, HU G Q, et al. Synthesis and luminescence properties of multicolor tunable ZnNb2O6:Dy3+, Eu3+ phosphors based on energy transfer [J]. Journal of Guangdong University of Technology, 2020, 37(1): 34-41. [7] 刘加海, 胡珺, 蒋健平, 等. 用于等离子体显示的蓝色荧光粉BaMgAl10O17:Eu2+发光特性表征的研[J]. 浙江大学学报(理学版、), 2011, 38(2): 185-188. LIU J H, HU J, JIANG J P, et al. Research on the luminescent property representation of blue phosphors BaMgAl10O17:Eu2+ for PDP [J]. Journal of Zhejiang University (Science Edition), 2011, 38(2): 185-188. [8] LIU J M, LIU Y Y, ZHANG D D, et al. Synthesis of GdAlO3: Mn4+, Ge4+@ Au core–shell nanoprobes with plasmon-enhanced near-infrared persistent luminescence for in vivo trimodality bioimaging [J]. ACS Applied Materials & Interfaces, 2016, 8(44): 29939-29949. [9] QIAO J W, ZHAO J, LIU Q L, et al. Recent advances in solid-state LED phosphors with thermally stable luminescence [J]. Journal of Rare Earths, 2019, 37(6): 565-572. [10] DU M H. Mn4+ emission in pyrochlore oxides [J]. Journal Luminescence, 2015, 157: 69-73. [11] SADAO A. Photoluminescence properties of Mn4+ activated oxide phosphors for use in white-LED applications: A review [J]. Journal of Luminescence, 2018, 202: 263-281. [12] BARTHOU C, BENOIT J, BENALLOUL P, MORELL A, et al. Mn2+ concentration effect on the optical properties of Zn2SiO4: Mn phosphors [J]. Journal of the Electrochemical Society, 1994, 141(2): 524. [13] ZHU H M, LIN C C, LUO W Q, et al. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes [J]. Nature Communications, 2014, 5(1): 1-10. [14] CHEN H L, LIN H, HUANG Q M, et al. A novel double-perovskite Gd2ZnTiO6: Mn4+ red phosphor for UV-based w-LEDs: structure and luminescence properties [J]. Journal of Materials Chemistry C, 2016, 4(12): 2374-2381. [15] HUANG L, LIU Y, YU J B, et al. Highly stable K2SiF6: Mn4+@ K2SiF6 composite phosphor with narrow red emission for white LEDs [J]. ACS Applied Materials & Interfaces, 2018, 10(21): 18082-18092. [16] MASSA G D, KIM H H, WHEELER R M, et al. Plant productivity in response to LED lighting [J]. HortScience, 2008, 43(7): 1951-1956. [17] KULA M, RYS M, SKOCZOWSKI A. Far-red light (720 or 740 nm) improves growth and changes the chemical composition of Chlorella vulgaris [J]. Engineering in Life Sciences, 2014, 14(6): 651-657. [18] NAKAJIMA T, TSUCHIYA T. Plant habitat-conscious white light emission of Dy3+ in whitlockite-like phosphates: reduced photosynthesis and inhibition of bloom impediment [J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21398-21407. [19] ZHOU Z W, ZHENG J M, SHI R, et al. Ab initio site occupancy and far-red emission of Mn4+ in cubic-phase La(MgTi)1/2O3 for plant cultivation [J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6177-6185. [20] WU L W, BAI Y X, WU L, et al. Analysis of the structure and abnormal photoluminescence of a red-emitting LiMgBO3: Mn2+ phosphor [J]. Dalton Transactions, 2018, 47(37): 13094-13105. [21] LIU Y X, JIA Q, ZHOU J. Recent Advance in Near-Infrared (NIR) Imaging Probes for Cancer Theranostics [J]. Advanced Therapeutics, 2018, 1(8): 1800055. [22] ZHAO J Y, ZHONG D, ZHOU SB. NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy [J]. Journal of Materials Chemistry B, 2018, 6(3): 349-365. [23] WELSHER K, LIU Z, DARANCIANG D, et al. Select imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules [J]. Nano Letters, 2008, 8(2): 586-590. [24] ZHANG X W, LI Y, HU Z L, et al. A general strategy for controllable synthesis of Ba3(MO4)2: Mn5+ (M= V, P) nanoparticles [J]. RSC Advances, 2017, 7(17): 10564-10569. [25] ANTARIS A L, CHEN H, CHENG K, et al. A small-molecule dye for NIR-II imaging [J]. Nature Materials, 2016, 15(2): 235. [26] AJITHKUMAR G, YOO B, GORAL D E, et al. Multimodal bioimaging using a rare earth doped Gd2O2S:Yb/Er phosphor with upconversion luminescence and magnetic resonance properties [J]. Journal of Materials Chemistry B, 2013, 1(11): 1561-1572. [27] CAO R P, YU X G, SUN X Y, et al. Near-infrared emission Ba3(PO4)2:Mn5+ phosphor and potential application in vivo fluorescence imaging [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 128: 671-673. [28] ZHANG X W, NIE J M, LIU S S, et al. Structural variation and near infrared luminescence in Mn5+-doped M2SiO4 (M= Ba, Sr, ca) phosphors by cation substitution [J]. Journal of Materials Science: Materials in Electronics, 2018, 29(8): 6419-6427. [29] LÜ W, LV W Z, ZHAO Q, et al. A novel efficient Mn4+ activated Ca14Al10Zn6O35 phosphor: application in red-emitting and white LEDs [J]. Inorganic Chemistry, 2014, 53(22): 11985-11990. [30] ZHANG X, NIE J, LIU S, ET AL. Deep-red photoluminescence and long persistent luminescence in double perovskite-type La2MgGeO6:Mn4+ [J]. Journal of the American Ceramic Society, 2018, 101(4): 1576-1584. [31] ZHOU Y C, JIANG P, LEI H H, et al. Synthesis and properties of novel turquoise-green pigments based on BaAl2-xMn xO4+ y [J]. Dyes and Pigments, 2018, 155: 212-217. [32] 刘曼曼, 耿爱芳, 闫景辉, 等. 白光LED用红色荧光粉Cs2SiF6:Mn4+的软化学法制备及性能[J]. 无机化学学报, 2019, 35(9): 1593-1601. LIU M M, GEN A F, YAN J H, et al. Soft-chemical preparation and performance of red phosphor Cs2SiF6:Mn4+ for white LEDs [J]. Chinese Journal of Inorganic Chemistry, 2019, 35(9): 1593-1601. [33] DING X, ZHU G, GENG W Y, et al. Rare-earth-free high-efficiency narrow-band red-emitting Mg3Ga2GeO8: Mn4+ phosphor excited by near-UV light for white-light-emitting diodes [J]. Inorganic Chemistry, 2015, 55(1): 154-162. [34] JIANG B, CHI F, ZHAO L, et al. Luminescence properties of a new green emitting long afterglow phosphor Ca14Zn6Ga10O35: Mn2+, Ge4+ [J]. Journal of Luminescence, 2019, 206: 234-239. [35] BERGSTRAND J, LIU Q, HUANG B, et al. On the decay time of upconversion luminescence [J]. Nanoscale, 2019, 11(11): 4959-4969. [36] YANG H, ZHAO W, LIN X, et al. Hundreds of times of photo-stimulation with low energy light as a new reused bio-imaging phosphor from Cr3+, Si4+-doped Y3Ga5O12 [J]. Journal of Luminescence, 2020, 219: 116871. [37] CAI P Q, QIN L, CHEN C L, et al. Optical thermometry based on vibration sidebands in Y2MgTiO6: Mn4+ double perovskite [J]. Inorganic Chemistry, 2018, 57(6): 3073-3081. [38] WADE S A, COLLINS S F, BAXTER G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing [J]. Journal of Applied Physics, 2003, 94(8): 4743-4756. [39] SHI R, LIN L T, DORENBOS P, et al. Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6 [J]. Journal of Materials Chemistry C, 2017, 5(41): 10737-10745. |
[1] | 梁柏鑫, 易双萍, 胡耕樵, 方志雄, 赵韦人. 基于能量传递可调色度ZnNb2O6:Dy3+, Eu3+荧光粉的制备及其发光性能研究[J]. 广东工业大学学报, 2020, 37(01): 34-41. |
[2] | 何景祺, 罗莉. 新型近紫外激发单一基质荧光粉Sr2V2O7:Ln(Ln=Eu3+, Dy3+, Sm3+, Tb3+)的研究[J]. 广东工业大学学报, 2019, 36(01): 68-74. |
[3] | 张璐, 易双萍, 赵韦人, 胡小雪. 紫外激发GdNbO4:Tb3+色度可调荧光粉的制备和发光性能的研究[J]. 广东工业大学学报, 2017, 34(05): 91-95. |
[4] | 黄保裕, 罗莉, 王银海, 韩春龙. Ba3Y(PO4)3:Sm3+, Eu3+红光荧光粉的发光和能量传递的研究[J]. 广东工业大学学报, 2017, 34(02): 40-47. |
[5] | 黄军,易双萍,冼洁强,张璐. Eu3+和Dy3+共掺单基质Ba2CaWO6白色荧光粉的合成与发光性质[J]. 广东工业大学学报, 2016, 33(02): 76-80. |
|