广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (03): 116-124.doi: 10.12052/gdutxb.210150
刘效洲, 朱光羽
Liu Xiao-zhou, Zhu Guang-yu
摘要: 一次风室是循环流化床锅炉的关键部件之一,其内部一次风流动分布的均匀性对循环流化床锅炉的高效运行至关重要。一次风气流分布不均匀会对锅炉燃烧产生不利影响,导致锅炉热效率降低。为了提高循环流化床锅炉的运行效率,采用数值模拟的方法研究设计合适的导流板。模拟结果表明,在一次风室内安装导流板后,一次风室内横截面处的气流速度不均匀性由81%降低到24%。为了验证数值模拟结果,采用了220 t/h循环流化床锅炉的缩小比例几何模型,在5种不同的实验条件下进行了可视化和速度分布均匀性实验。实验结果证实了数值模拟的正确性。此外,在一台220 t/h循环流化床锅炉上进行了热态实验。热态实验结果表明,在一次风室中加装导流板后,锅炉热效率由85.71%提高到88.34%,相当于每年节约5000 t标准煤,经济效益显著,证明了导流板的有效性。
中图分类号:
[1] 杨申莉, 张世红, 刘德昌, 等. 40t/h 循环流化床锅炉燃烧工况差的原因分析与改造[J]. 电站系统工程, 2002, 18(3): 13-15. YANG S L, ZHANG S H, LIU D C, et al. Analysis and improving measures of 40 t/h CFB boiler combustion efficiency [J]. Power System Engineering, 2002, 18(3): 13-15. [2] 赵志强. 循环流化床锅炉运行参数控制措施[J]. 化工设计通讯, 2017, 43(8): 127-127. ZHAO Z Q. Control measures for operating parameters of circulating fluidized bed boilers [J]. Chemical Engineering Design Communications, 2017, 43(8): 127-127. [3] 李斌. 中小型循环流化床锅炉二次风的布置[J]. 工业锅炉, 2009, 4: 14-16. LI B. The arrangement of secondary air in small and middle sized CFB boiler [J]. Industrial Boilers, 2009, 4: 14-16. [4] CAI R, ZHANG Y. Force characteristic of a large dense object in a fluidized bed equipped with an inclined air distributor [J]. Advanced Powder Technology, 2016, 27(2): 599-609. [5] WORMSBECKER M, PUGSLEY T S, TANFARA H. The influence of distributor design on fluidized bed dryer hydrodynamics[C]//BERRUTI F, BI X T, PUGSLEY T S. Proceedings of the 12th International Conference on Fluidization-New Horizons in Fluidization Engineering. Vancouver: Engineering Conferences International, 2007: 815-822. [6] LUO L, WEI M, FAN Y, et al. Heuristic shape optimization of baffled fluid distributor for uniform flow distribution [J]. Chemical Engineering Science, 2015, 123: 542-556. [7] WEI M, FAN Y, LUO L, et al. CFD-based evolutionary algorithm for the realization of target fluid flow distribution among parallel channels [J]. Chemical Engineering Research and Design, 2015, 100: 341-352. [8] 杨琛刚. 自主型1178t/h循环流化床锅炉一次风结构选型设计[D]. 上海: 上海交通大学, 2014. [9] 焦小波, 徐林云, 张光璐. 循环流化床锅炉布风系统的优化设计改造[J]. 科技创新与应用, 2016, 25: 160-160. JIAO X B, XU L Y, ZHANG G L. Optimal design and transformation of air distribution system of circulating fluidized bed boiler [J]. Technology Innovation and Application, 2016, 25: 160-160. [10] 侯万林. 循环流化床锅炉防磨技术的探讨[J]. 能源科技, 2021, 19(3): 64-67. HOU W L. Discussion on Anti-wear Technology of Circulating Fluidized Bed Boiler [J]. Energy Science and Technology, 2021, 19(3): 64-67. [11] 尤灏. 垃圾焚烧余热锅炉导流板结构参数化建模及优化设计[J]. 环境卫生工程, 2021, 29(2): 50-55,62. YOU H. Parametric modeling and optimization design of guide plate structure in exhaust-heat boiler of waste incineration [J]. Environmental Sanitation Engineering, 2021, 29(2): 50-55,62. [12] 韦振祖, 赵宁波, 李明磊, 等. 非均匀入口条件下SCR脱硝系统流场优化改造技术研究[J]. 锅炉技术, 2021, 52(4): 74-80. WEI Z Z, ZHAO N B, LI M L, et al. Study on the flow field optimization of SCR denitration system based on non-uniform inlet parameters [J]. Boiler Technology, 2021, 52(4): 74-80. [13] 张春晋. 管道列车在平直管段运移时的水力特性研究[D]. 太原: 太原理工大学, 2019. [14] ZHU Z, NIU J, LI Y. Swirling-strength based large eddy simulation of turbulent flow around single square cylinder at low Reynolds numbers [J]. Applied Mathematics and Mechanics, 2014, 35(8): 959-978. [15] ZHU J, OUYANG Z, LU Q. Numerical simulation on pulverized coal combustion and NO x emissions in high temperature air from circulating fluidized bed [J]. Journal of Thermal Science, 2013, 22(3): 261-268. [16] 吕清刚, 宋国良, 孙运凯, 等. 690t/h 循环流化床锅炉设计特点与运行特性分析[J]. 动力工程学报, 2010, 12: 899-903. LYU Q G, SONG G L, SUN Y K, et al. Analysis on design features and operation characteristics of a 690 t/h circulating fluidized bed boiler [J]. Journal of Chinese Society of Power Engineering, 2010, 12: 899-903. [17] 谷海涛. 循环流化床锅炉运行调节分析[J]. 能源与节能, 2018, 3: 68-69. GU H T. Operation regulation analysis of circulating fluidized bed boiler [J]. Energy and Conservation, 2018, 3: 68-69. [18] 孟向军. 循环流化床锅炉出口区域颗粒浓度分布和运动特性的研究[D]. 天津: 天津大学, 2003. [19] 刘昀, 刘德昌, 陈汉平, 等. 提高循环流化床锅炉热效率的措施[J]. 电力设备, 2008, 9(4): 1-6. LIU Y, LIU D C, CHEN H P, et al. Measures for improving the thermal efficiency of circulating fluidized bed boiler [J]. Electrical Equipment, 2008, 9(4): 1-6. [20] 王凤阳, 华海峰, 任海, 等. 75 t/h循环流化床锅炉燃烧优化调整的实验研究[J]. 工业锅炉, 2020, 5: 41-45. WANG F Y, HUA H F, REN H, et al. Experimental study on combustion optimization adjustment of 75 t/h CFB boilers [J]. Industrial Boilers, 2020, 5: 41-45. [21] 李鹏. 生物质混燃对350 MW超临界CFB烟气污染物排放影响[J]. 山东电力技术, 2018, 45(4): 66-68. LI P. Effect of biomass mixed combustion on 350 MW supercritical CFB exhaust emission [J]. Shandong Electric Power, 2018, 45(4): 66-68. [22] 李立. 循环流化床锅炉水(汽)冷式分离器的设计研究[D]. 上海: 上海交通大学, 2013. |
[1] | 刘效洲, 朱睿, 朱光羽. 天然气掺氢燃烧技术在旋流式燃气灶上的数值模拟研究[J]. 广东工业大学学报, 2023, 40(01): 113-121. |
[2] | 邹翀, 唐雄民, 陈伟正, 江天鸿, 方文睿. 脉冲电流源作用下大气压介质阻挡放电的特性分析[J]. 广东工业大学学报, 2022, 39(04): 36-45. |
[3] | 戴美玲, 程成, 吴智文, 卢镇伟, 卢杰迅, 杨坚, 杨福俊. 开孔空心球结构的准静态压缩力学行为[J]. 广东工业大学学报, 2022, 39(04): 83-90,97. |
[4] | 李宇航, 高振宇, 杨雪强, 刘攀. 静压钢板桩贯入阻力试验与数值仿真[J]. 广东工业大学学报, 2022, 39(01): 129-134. |
[5] | 罗钧午, 李冬梅, 梁帅, 王帅超, 肖曙红. 十字交叉型微通道内液滴形成的数值模拟研究[J]. 广东工业大学学报, 2020, 37(05): 68-74. |
[6] | 甘阳阳, 李志生. 空气幕对厨房内PM2.5控制效果的模拟与分析[J]. 广东工业大学学报, 2020, 37(03): 82-87. |
[7] | 刘陈霖, 郑三强, 韩晓卓. 具有Allee效应捕食-竞争系统的时空动态分析[J]. 广东工业大学学报, 2019, 36(06): 38-44. |
[8] | 吴成赫, 刘丽孺, 陈毅刚, 王璋元. 旋转集热板式太阳能烟囱性能研究[J]. 广东工业大学学报, 2018, 35(05): 70-74. |
[9] | 赵冰春, 汪新, 赖志平. 居住小区布局形式对热环境的影响[J]. 广东工业大学学报, 2016, 33(06): 91-95. |
[10] | 王长宏, 黄炯桐, 曾文强. 高熔点钢板电阻点焊电极传热特性数值模拟与分析[J]. 广东工业大学学报, 2016, 33(03): 6-10. |
[11] | 刘勇健, 刘意美, 陈创鑫, 王颖, 罗启洋, 林辉. 软土深基坑围护结构水平变形特性研究[J]. 广东工业大学学报, 2016, 33(01): 89-94. |
[12] | 杨艺. 海水太阳池非稳态热质传递有限容积法模型[J]. 广东工业大学学报, 2015, 32(2): 120-125. |
[13] | 赖志平, 汪新. 某会展中心建筑表面风压分布的数值模拟[J]. 广东工业大学学报, 2014, 31(2): 78-84. |
[14] | 张雅宁, 杨春山, 刘锦伟, 何娜. 基坑开挖对既有桥梁桩基的数值分析[J]. 广东工业大学学报, 2014, 31(1): 107-111. |
[15] | 杨春山, 何娜, 张雅宁. 考虑渗流-应力耦合基坑开挖降水数值分析[J]. 广东工业大学学报, 2013, 30(4): 43-48. |
|