广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (03): 125-132.doi: 10.12052/gdutxb.210060

• • 上一篇    下一篇

聚酰亚胺基复合材料在电池电极中的研究进展

刘存生1, 刘屹东1, 廖松义2, 黄兴文1, 李清玲1, 宋道远3, 闵永刚1   

  1. 1. 广东工业大学 材料与能源学院, 广东 广州 510006;
    2. 仲恺农业工程学院 化学化工学院, 广东 广州 510225;
    3. 深圳市凌盛电子有限公司, 广东 深圳 518000
  • 收稿日期:2021-04-25 出版日期:2022-05-10 发布日期:2022-05-19
  • 通信作者: 廖松义(1990-),男,副教授,博士,主要研究方向为锂离子电池材料的制备及其性能,E-mail:songyiliao@gdut.edu.cn;闵永刚(1963-),男,教授,博士,主要研究方向为有机光电功能材料与器件、高性能聚合物材料等,E-mail:ygmin@gdut.edu.cn
  • 作者简介:刘存生(1998-),男,硕士研究生,主要研究方向为锂离子电池材料制备
  • 基金资助:
    科技部国家重点研发计划项目(2020YFB0408100);国家自然科学基金资助项目(U20A20340)

Research Progress of Polyimide-based Composite Materials in Battery Electrodes

Liu Cun-sheng1, Liu Yi-dong1, Liao Song-yi2, Huang Xing-wen1, Li Qing-ling1, Song Dao-yuan3, Min Yong-gang1   

  1. 1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 , China;
    2. School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
    3. Shenzhen Lingsheng Electronics Co., Ltd., Shenzhen 518000, China
  • Received:2021-04-25 Online:2022-05-10 Published:2022-05-19

摘要: 聚酰亚胺(Polyimide,PI)是一种以二酐和二胺为原料,热亚胺化后合成的聚合物。PI作为电池电极材料,具有理论容量高、机械强度大和易于回收的优点,但是它的绝缘性限制了内部活性位点的利用率,导致电池的倍率性能较差。本文综述了通过构建共轭结构来提高结构稳定性和引入羰基结构增加PI氧化还原中心(C=O)位点,以获得更高电池容量的研究策略,介绍了碳化PI和与石墨烯、碳纳米管的杂化以及使用静电纺丝工艺对PI作为电池电极的电化学性能的改进,对基于PI的其他复合材料的研究进行了总结,并对目前PI的研究方向进行了展望。

关键词: 聚酰亚胺, 碳材料, 电极, 碳化, 杂化

Abstract: Polyimide (PI) is a polymer synthesized by thermal imination of dianhydride and diamine as raw materials. As a battery electrodes material, it boasts high theoretical capacity, high mechanical strength and easy recovery. However, its insulation limits the utilization rate of internal active sites, resulting in poor rate performance of the battery. A research review is conducted concerning the improvement of the structural stability through enlarging conjugate structure and the introduction of more carbonyl structure (C=O) to increase PI redox center site. In order to obtain higher battery capacity, PI, carbide and graphene combination, the hybridization of carbon nanotubes and the electrostatic spinning process are applied to improve electrochemical performance of battery electrode. The research of other materials based on PI is summarized as well. And the current research direction of PI is prospected.

Key words: polyimide, carbon material, electrode, carbonization, hybridization

中图分类号: 

  • TQ323.7
[1] WENG W, KURIHARA R, WANG J, et al. Electrospun carbon nanofiber-based composites for lithium-ion batteries: structure optimization towards high performance [J]. Composites Communications, 2019, 15: 135-148.
[2] 李新喜, 袁晓娇, 张国庆, 等. 锂离子电池硅/石墨复合负极材料的制备及性能研究[J]. 广东工业大学学报, 2014, 31(2): 27-31.
LI X X, YUAN X J, ZHANG G Q, et al. Preparation and properties of silicon/graphite composites as anode materials for lithium batteries [J]. Journal of Guangdong University of Technology, 2014, 31(2): 27-31.
[3] WANG L, LIU F, SHAO W, et al. Graphite oxide dopping polyimide nanofiber membrane via electrospinning for high performance lithium ion batteries [J]. Composites Communications, 2019, 16: 150-157.
[4] LI L, CHEN Y, YU T, et al. Preparation of polylactic acid/TEMPO-oxidized bacterial cellulose nanocomposites for 3D printing via Pickering emulsion approach [J]. Composites Communications, 2019, 16: 162-167.
[5] ZHAO Q, LU Y, CHEN J. Advanced organic electrode materials for rechargeable sodium-ion batteries [J]. Advanced Energy Materials, 2017, 7(8): 1601792.
[6] 胡季清. 锂离子电池用聚酰亚胺活性物质及粘结剂的研究[D]. 广州: 华南理工大学, 2019.
[7] 朱丽. 高性能聚酰亚胺粘结剂在锂离子电池硅负极中的研究[D]. 南昌: 江西师范大学, 2016.
[8] 王林林. 聚酰亚胺纳米纤维膜的制备及作为锂电池隔膜的研究[D]. 郑州: 中原工学院, 2020.
[9] LI L, LIU P, FU Q S, et al. Study on preparation of polyacrylonitrile/polyimide composite lithium-ion battery separator by electrospinning [J]. Journal of Materials Research, 2019, 34(4): 642-651.
[10] SONG Z, ZHAN H, ZHOU Y. Polyimides: promising energy-storage materials [J]. Angew Chem Int Ed Engl, 2010, 49(45): 8444-8448.
[11] PARK J H, KIM J M, KIM J S, et al. Polyimide/carbon black composite nanocoating layers as a facile surface modification strategy for high-voltage lithium ion cathode materials [J]. Journal of Materials Chemistry A, 2013, 1(40): 12441-12447.
[12] LEE M, HONG J, KIM H, et al. Organic nanohybrids for fast and sustainable energy storage [J]. Advanced Materials, 2014, 26(16): 2558-2565.
[13] WANG H G, YUAN S, MA D L, et al. Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries [J]. Advanced Energy Materials, 2014, 4(7): 1301651.
[14] SONG Z, XU T, GORDIN M L, et al. Polymer-graphene nanocomposites as ultrafast-charge and discharge cathodes for rechargeable lithium batteries [J]. Nano Lett, 2012, 12(5): 2205-2211.
[15] WANG Z, ZHANG B, ZHANG Y, et al. A novel π-conjugated poly(biphenyl diimide) with full utilization of carbonyls as a highly stable organic electrode for Li-ion batteries [J]. RSC Advances, 2020, 10(52): 31049-31055.
[16] HE J, LIAO Y, HU Q, et al. Multi carbonyl polyimide as high capacity anode materials for lithium ion batteries [J]. Journal of Power Sources, 2020, 451: 227792.
[17] WANG J, YAO H, DU C, et al. Polyimide schiff base as a high-performance anode material for lithium-ion batteries [J]. Journal of Power Sources, 2021, 482: 228931.
[18] LI J, LUO M, BA Z, et al. Hierarchical multicarbonyl polyimide architectures as promising anode active materials for high-performance lithium/sodium ion batteries [J]. Journal of Materials Chemistry A, 2019, 7(32): 19112-19119.
[19] HERNÁNDEZ G, SALSAMENDI M, MOROZOVA S M, et al. Polyimides as cathodic materials in lithium batteries: effect of the chemical structure of the diamine monomer [J]. Journal of Polymer Science Part A:Polymer Chemistry, 2018, 56(7): 714-723.
[20] LIU X, QIU S, MEI P, et al. Chain structure-dependent electrochemical performance of polyimide cathode materials for lithium-ion batteries [J]. Journal of Materials Science, 2020, 56(5): 3900-3910.
[21] BA Z, WANG Z, LUO M, et al. Benzoquinone-based polyimide derivatives as high-capacity and stable organic cathodes for lithium-ion batteries [J]. ACS Appl Mater Interfaces, 2020, 12(1): 807-817.
[22] LI Z, ZHOU J, XU R, et al. Synthesis of three dimensional extended conjugated polyimide and application as sodium-ion battery anode [J]. Chemical Engineering Journal, 2016, 287: 516-522.
[23] ZHANG Q, LIN G, HE Y, et al. Chain engineering-tailored microstructures and lithium storage performance of hydrothermally-synthesized linear polyimides [J]. Materials Today Chemistry, 2020, 17: 100341.
[24] JUNG M H, GHORPADE R V. Polyimide containing tricarbonyl moiety as an active cathode for rechargeable Li-ion batteries [J]. Journal of The Electrochemical Society, 2018, 165(11): A2476-A2482.
[25] 李珺, 赵昕, 巴兆虎, 等. 多羰基聚酰亚胺正极材料的制备及其电化学性能[J]. 东华大学学报(自然科学版), 2020, 46(3): 383-390.
LI J, ZHAO X, BA Z H, et al. Preparation and electrochemical properties of multicarbonyl polyimide cathode materials [J]. Journal of Donghua University (Natural Science), 2020, 46(3): 383-390.
[26] YANG H, LIU S, CAO L, et al. Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries [J]. Journal of Materials Chemistry A, 2018, 6(42): 21216-21224.
[27] LIU S, YANG H, SUI L, et al. Self-adhesive polyimide (PI)@reduced graphene oxide (RGO)/PI@carbon nano-tube (CNT) hierarchically porous electrodes: maximizing the utilization of electroactive materials for organic Li ion batteries [J]. Energy Technology, 2020, 8(9): 2000397.
[28] LYU H, LI P, LIU J, et al. Aromatic polyimide/graphene composite organic cathodes for fast and sustainable lithium-ion batteries [J]. ChemSusChem, 2018, 11(4): 763-772.
[29] MENG Y, WU H, ZHANG Y, et al. A flexible electrode based on a three-dimensional graphene network-supported polyimide for lithium-ion batteries [J]. J Mater Chem A, 2014, 2(28): 10842-10846.
[30] AHMAD A, WU H, GUO Y, et al. A graphene supported polyimide nanocomposite as a high performance organic cathode material for lithium ion batteries [J]. RSC Advances, 2016, 6(40): 33287-33294.
[31] HUANG Y, LI K, LIU J, et al. Three-dimensional graphene/polyimide composite-derived flexible high-performance organic cathode for rechargeable lithium and sodium batteries [J]. Journal of Materials Chemistry A, 2017, 5(6): 2710-2716.
[32] CHANG B, MA J, JIANG T, et al. Reduced graphene oxide promoted assembly of graphene@polyimide film as a flexible cathode for high-performance lithium-ion battery [J]. RSC Advances, 2020, 10(15): 8729-8734.
[33] WU H P, YANG Q, MENG Q H, et al. A polyimide derivative containing different carbonyl groups for flexible lithium ion batteries [J]. Journal of Materials Chemistry A, 2016, 4(6): 2115-2121.
[34] GU T, ZHOU M, LIU M, et al. A polyimide–MWCNTs composite as high performance anode for aqueous Na-ion batteries [J]. RSC Advances, 2016, 6(58): 53319-53323.
[35] WU H, SHEVLIN S A, MENG Q, et al. Flexible and binder-free organic cathode for high-performance lithium-ion batteries [J]. Adv Mater, 2014, 26(20): 3338-3343.
[36] WANG G, CHANDRASEKHAR N, BISWAL B P, et al. A crystalline, 2D polyarylimide cathode for ultrastable and ultrafast Li storage [J]. Adv Mater, 2019, 31(28): e1901478.
[37] LIU N, LIU Y, ZHAO Y, et al. CNT-intertwined polymer electrode toward the practical application of wearable devices [J]. ACS Appl Mater Interfaces, 2019, 11(50): 46726-46734.
[38] WANG J G, YANG Y, HUANG Z H, et al. MnO-carbon hybrid nanofiber composites as superior anode materials for lithium-ion batteries [J]. Electrochimica Acta, 2015, 170: 164-170.
[39] ZHAO F, ZHAO X, PENG B, et al. Polyimide-derived carbon nanofiber membranes as anodes for high-performance flexible lithium ion batteries [J]. Chinese Chemical Letters, 2018, 29(11): 1692-1697.
[40] ZHANG F, ALHAJJI E, LEI Y, et al. Highly doped 3D graphene Na-ion battery anode by laser scribing polyimide films in nitrogen ambient [J]. Advanced Energy Materials, 2018, 8: 1800353.
[41] LIU Q, XIAO Z, CUI X, et al. In-situ confinement of ultrasmall SnO2 nanocrystals into redox-active polyimides for high-rate and long-cycling anode materials [J]. Composites Communications, 2021, 23: 100561.
[42] WANG S, LEE P K, YANG X, et al. Polyimide-cellulose interaction in Sb anode enables fast charging lithium-ion battery application [J]. Materials Today Energy, 2018, 9: 295-302.
[43] NAN D, WANG J G, HUANG Z H, et al. Highly porous carbon nanofibers from electrospun polyimide/SiO2 hybrids as an improved anode for lithium-ion batteries [J]. Electrochemistry Communications, 2013, 34: 52-55.
[44] ZHOU J, YU X, ZHOU J, et al. Polyimide/metal-organic framework hybrid for high performance Al-organic battery [J]. Energy Storage Materials, 2020, 31: 58-63.
[45] SHEN J, HU W, LI Y, et al. Fabrication of free-standing N-doped carbon/TiO2 hierarchical nanofiber films and their application in lithium and sodium storages [J]. Journal of Alloys and Compounds, 2017, 701: 372-379.
[46] REDDY A L M, SRIVASTAVA A, GOWDA S R, et al. Synthesis of nitrogen-doped graphene films for lithium battery application [J]. ACS Nano, 2010, 4(11): 6337-6342.
[47] WANG Y, LI Y, MAO S S, et al. N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodiumion batteries [J]. Sustainable Energy & Fuels, 2019, 3(3): 717-722.
[48] WU Q, LIU J, YUAN C, et al. Nitrogen-doped 3D flower-like carbon materials derived from polyimide as high-performance anode materials for lithium-ion batteries [J]. Applied Surface Science, 2017, 425: 1082-1088.
[49] ZHANG G, XU Z, LIU P, et al. A facile in-situ polymerization strategy towards polyimide/carbon black composites as high performance lithium ion battery cathodes [J]. Electrochimica Acta, 2018, 260: 598-605.
[50] MA L, LU D, YANG P, et al. Solution-processed organic PDI/CB/TPU cathodes for flexible lithium ion batteries [J]. Electrochimica Acta, 2019, 319: 201-209.
[51] AMIN K, MENG Q, AHMAD A, et al. A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries [J]. Advanced Materials, 2018, 30(4): 1703868.
[52] CHENG Q, WU M, LI M, et al. Ultratough artificial nacre based on conjugated cross-linked graphene oxide [J]. Angewandte Chemie, 2013, 125(13): 3838-3843.
[53] LI N, CHEN Z, REN W, et al. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates [J]. Proceedings of the National Academy of Sciences, 2012, 109(43): 17360-17365.
[1] 余文涛, 宋建远, 方基永, 刘屹东, 刘存生, 闵永刚. 复合型低介电常数聚酰亚胺复合材料研究进展[J]. 广东工业大学学报, 2023, 40(01): 122-129.
[2] 庄楚楠, 许佳雄, 林俊辉. CZTSSe薄膜与Mo背电极接触特性的数值分析[J]. 广东工业大学学报, 2020, 37(03): 106-113.
[3] 曾丽珍, 何苗. 碳化棉织物作为微生物燃料电池廉价阳极材料的研究[J]. 广东工业大学学报, 2018, 35(04): 111-118.
[4] 孙媚华, 陈迁. 离子色谱法和离子选择电极法测定水中氯化物的比较[J]. 广东工业大学学报, 2017, 34(04): 36-40.
[5] 王长宏, 黄炯桐, 曾文强. 高熔点钢板电阻点焊电极传热特性数值模拟与分析[J]. 广东工业大学学报, 2016, 33(03): 6-10.
[6] 曾丽珍,李伟善. 碳化钼作为微生物燃料电池阴极催化剂的研究[J]. 广东工业大学学报, 2013, 30(1): 110-114.
[7] 王宁. Nb变质处理铸造高速钢的组织和性能[J]. 广东工业大学学报, 2012, 29(2): 68-71.
[8] 屈广周1, 李杰2. 筛网-平板介质阻挡放电的特性及影响因素的研究[J]. 广东工业大学学报, 2011, 28(3): 1-4.
[9] 蔡丽俊, 孙明, 王红岩. 喷嘴-筒式脉冲空气放电中自由基的发射光谱研究[J]. 广东工业大学学报, 2011, 28(3): 12-14.
[10] 姚丹1, 2, 鲁娜1, 3, 孙长海1, 吴彦1, 3, 李杰1, 3. 气相脉冲放电水中H2O2生成影响因素研究[J]. 广东工业大学学报, 2011, 28(3): 15-17.
[11] 李学文1, 2, 李义鹏1, 孙立富1, 张婷婷1. 粉体同轴柱形电极放电性能分析[J]. 广东工业大学学报, 2011, 28(3): 36-39.
[12] 谷泓, 潘晓建, 郭锦屏. 基于电磁场特性分析软件的静电传感器电极仿真方法[J]. 广东工业大学学报, 2011, 28(3): 54-58.
[13] 唐勇军; 王振龙; 郭钟宁; . 微型电火花装置直接驱动电极丝的研究[J]. 广东工业大学学报, 2007, 24(4): 53-56.
[14] 许怡赦; 陈国鼎; 周金运; . 电化学处理对Π共轭聚合物阳极特性的改善[J]. 广东工业大学学报, 2004, 21(3): 8-10.
[15] 邓俊; 朱又春; 许燕滨; 汤兵; . 废水的电极—SBR法处理效果初探[J]. 广东工业大学学报, 2003, 20(2): 77-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!