广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (06): 98-106.doi: 10.12052/gdutxb.200177

• 综合研究 • 上一篇    下一篇

基于时间序列聚合的有机朗肯循环系统优化方法

危由兴, 罗向龙, 胡凌锋, 陈健勇, 梁颖宗, 杨智, 陈颖   

  1. 广东工业大学 材料与能源学院, 广东 广州 510006
  • 收稿日期:2020-12-30 出版日期:2022-11-10 发布日期:2022-11-25
  • 通信作者: 罗向龙(1978-) ,男,教授,博士,主要研究方向为热力系统集成与优化、换热强化与优化等,E-mail:lxl-dte@gdut.edu.cn
  • 作者简介:危由兴(1995-) ,男,硕士研究生,主要研究方向为低温余热有机朗肯循环系统优化
  • 基金资助:
    国家自然科学基金资助面上项目(51876043)

Optimization Method of Organic Rankine Cycle System Based on Time Series Aggregation

Wei You-xing, Luo Xiang-long, Hu Ling-feng, Chen Jian-yong, Liang Ying-zong, Yang Zhi, Chen Ying   

  1. School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-12-30 Online:2022-11-10 Published:2022-11-25

摘要: 有机朗肯循环(Organic Rankine Cycle, ORC) 发电技术在回收中低温余热和中低温太阳能热发电方面具有广阔的应用前景,系统优化设计对提高系统发电效率和降低系统全年发电成本具有重要意义。本文建立了太阳能驱动ORC系统设备结构参数和系统运行参数同步优化模型;考虑到太阳能辐射量和环境温度随时间变化的特性,基于时间序列聚合法获得5个聚合点作为设计工况,分别得到了5个聚合设计工况下最优设计方案。结果表明:太阳能辐射量和环境设计温度不同,设计的系统结构参数和运行方案不同;在环境温度值低、太阳辐射值高时度电成本 (Electricity Production Cost, EPC) 最低,ORC效率最高。

关键词: 有机朗肯循环, 设计工况, 时间序列聚合, 优化

Abstract: Organic Rankine cycle (ORC) power generation technology has a wide application potential in the recovery of medium-to-low temperature waste heat and medium-to-low temperature solar thermal power generation. The system optimization design is of great significance to improve system power generation efficiency and reduce the annual generation cost of the system. A synchronous optimization model of the equipment structure parameters and system operation parameters of the solar-driven ORC system is established. Considering the characteristics of solar radiation and ambient temperature changes with time, based on the time series aggregation method, five aggregation points were obtained as design conditions, and the optimal design schemes under the five aggregation design conditions are obtained. The results show that the solar radiation and the environmental design temperature are different, and the designed system structure parameters and operating schemes are different; When the solar radiation is low and the solar radiation value is high, the electricity production cost (EPC) is the lowest and the ORC efficiency is the highest.

Key words: organic Rankine cycle, design conditions, time series aggregation, optimization

中图分类号: 

  • TK121
[1] 王羽鹏, 罗向龙, 梁俊伟, 等. 有机朗肯循环系统工质设计与系统参数的同步优化[J]. 广东工业大学学报, 2020, 37(1): 69-80.
WANG Y P, LUO X L, LIANG J W, et al. A simultaneous optimization of working fluid design and system parameters in organic Rankine cycle [J]. Journal of Guangdong University of Technology, 2020, 37(1): 69-80.
[2] 涂俊平, 黄计康, 罗向龙, 等. 水平光滑管内R245fa轴向均匀沸腾传热特性实验研究[J]. 广东工业大学学报, 2020, 37(6): 71-77.
TU J P, HUANG J K, LUO X L, et al. An experimental study of axial uniform boiling heat transfer characteristics of R245fa in horizontal smooth tube [J]. Journal of Guangdong University of Technology, 2020, 37(6): 71-77.
[3] HETTIARACHCHI H D M, GOLUBOVIC M, WOREK W M, et al. Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources [J]. Energy, 2007, 32(9): 1698-1706.
[4] WEI D, LU X, LU Z, et al. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery [J]. Energy Conversion and Management, 2007, 48(4): 1113-1119.
[5] DAI Y, WANG J, LIN G, et al. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery [J]. Energy Conversion and Management, 2009, 50(3): 576-582.
[6] GU W, WENG Y, WANG Y J, et al. Theoretical and experimental investigation of an organic Rankine cycle for a waste heat recovery system [J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and Energy, 2009, 223(5): 523-533.
[7] AMICABILE S, LEE J, KUM D, et al. A comprehensive design methodology of organic Rankine cycles for the waste heat recovery of automotive heavy-duty diesel engines [J]. Applied Thermal Engineering, 2015, 87: 574-585.
[8] ZHAI L, XU G, WEN J, et al. An improved modeling for low-grade organic Rankine cycle coupled with optimization design of radial-inflow turbine [J]. Energy Conversion and Management, 2017, 153: 60-70.
[9] MARTINS G L, BRAGA S L, FERREIRA S B, et al. Design optimization of partial admission axial turbine for ORC service [J]. Applied Thermal Engineering, 2016, 96: 18-25.
[10] SADREDDINI A, FANI M, AGHDAM M A, et al. Exergy analysis and optimization of a CCHP system composed of compressed air energy storage system and ORC cycle [J]. Energy Conversion & Management, 2018, 157: 111-122.
[11] IMRAN M, USMAN M, PARK B S, et al. Multi-objective optimization of evaporator of organic Rankine cycle (ORC) for low temperature geothermal heat source [J]. Applied Thermal Engineering, 2015, 80: 1-9.
[12] 钟芬, 吴竺, 朱彤, 等. 低温余热驱动的热电复合系统优化设计[J]. 中国电机工程学报, 2016, 36(12): 3176-3183.
ZHONG F, WU Z, ZHU T, et al. Optimization design of a combined organic Rankine cycle-heat pump system driven by low-grade waste heat [J]. Proceedings of the CSEE, 2016, 36(12): 3176-3183.
[13] KOTZUR L, MARKEWITZ P, ROBINIUS M, et al. Impact of different time series aggregation methods on optimal energy system design [J]. Renewable Energy, 2018, 117: 474-487.
[14] PNA B, ES A, LHAC D, BK D, et al. Carpe diem: A novel approach to select representative days for long-term power system modeling [J]. Energy, 2016, 112: 430-442.
[15] SCHILLING J, EICHLER K, KLSCH B, et al. Integrated design of working fluid and organic Rankine cycle utilizing transient exhaust gases of heavy-duty vehicles [J]. Applied Energy, 2019, 255: 113207.
[16] YI Z T, LUO X L. Mathematical modelling and optimization of a liquid separation condenser-based organic Rankine cycle used in waste heat utilization [J]. Energy, 2017, 139: 916-934.
[17] RYANT, CHARLES J. Nomograph of Dittus-Boelter Equation [J]. Industrial & Engineering Chemistry, 1943, 35(11): 1187-1188.
[18] JIN S W, MA C Y, LAI T W. The simulation and analysis of fin-tube evaporator for air-conditioning[J]. Refrigeration and Air Conditioning, 2008 (4) : 101-104.
[19] YI Z T, LUO X L, YANG Z, et al. Thermo-economic-environmental optimization of a liquid separation condensation-based organic Rankine cycle driven by waste heat [J]. Journal of Cleaner Production, 2018, 184: 198-210.
[20] GARCÍA-CASCALES J R, VERA-GARCÍA F, CORBERÁN-SALVADOR J M, et al. Assessment of boiling and condensation heat transfer correlations in the modelling of plate heat exchangers [J]. International Journal of Refrigeration, 2007, 30(6): 1029-1041.
[21] ZHANG J, KÆRN M R, OMMEN T, et al. Condensation heat transfer and pressure drop characteristics of R134a, R1234ze(E) , R245fa and R1233zd(E) in a plate heat exchanger [J]. International Journal of Heat and Mass Transfer, 2019, 128: 136-149.
[22] DONG J, ZHANG X, WANG J, et al. Experimental investigation on heat transfer characteristics of plat heat exchanger applied in organic Rankine cycle (ORC) [J]. Applied Thermal Engineering, 2017, 112: 1137-1152.
[23] 朱康达. 分液板式冷凝器的性能及其在热泵系统中的应用[D]. 广州: 广东工业大学, 2019.
[24] 刘庆君, 刘德有, 朱天宇, 等. 槽式太阳能腔体式吸热器热力性能分析[J]. 中国电机工程学报, 2015, 35(1): 126-132.
LIU Q J, LIU D Y, ZHU T Y, et al. Analysis of thermodynamic performance of cavity absorber in the parabolic trough solar concentrator [J]. Proceedings of the Csee, 2015, 35(1): 126-132.
[25] 宋建忠, 张小松, 李舒宏, 等. 太阳能有机朗肯循环系统的实验特性[J]. 化工学报, 2014, 65(12) : 4958-4964.
SONG J Z, ZHANG X S, LI S H, et al. Experimental characteristics of solar organic Rankine cycle system[J]. CIESC Journal, 2014, 65(12) : 4958- 4964.
[26] 冯晨, 杨谋存, 朱跃钊, 等. 微型抛物槽式太阳能集热器集热特性研究[J]. 南京工业大学学报(自然科学版) , 2019, 41(6): 716-722.
FENG C, YANG M C, ZHU Y Z, et al. Heat collection performance of micro parabolic trough solar collector [J]. Journal of Nanjing University of Technology(Natural Science Edition) , 2019, 41(6): 716-722.
[27] YU G, SHU G, TIAN H, et al. Multi-approach evaluations of a cascade-organic Rankine cycle (C-ORC) system driven by diesel engine waste heat: part B-techno-economic evaluations [J]. Energ Convers Manage, 2015, 108: 596-608.
[28] BHATTACHARYYA D, SHAEIWITZ J A, BAILIE R C, et al. Analysis, synthesis and design of chemical processes[M]. New Jersey: Prentice Hall, 2012.
[29] LUO X L, YI Z T, ZHANG B J, et al. Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle [J]. Applied Energy, 2015, 185(pt.2): 1309-1323.
[1] 张欣, 王振友. 概率条件下基于双目标交替优化的知识表示模型[J]. 广东工业大学学报, 2022, 39(04): 24-31.
[2] 罗俊伟, 罗向龙, 郑晓生, 陈健勇, 梁颖宗, 杨智, 陈颖. 有机朗肯循环系统换热设备仿真研究[J]. 广东工业大学学报, 2022, 39(04): 128-134.
[3] 王小霞, 欧阳露, 郑诗琪, 胡三根, 韩霜. GeoHash与KNN在共享单车停靠点优化选择中的应用[J]. 广东工业大学学报, 2022, 39(03): 1-7.
[4] 王体春, 许枫魁. 基于可拓理论的无人驾驶汽车内饰设计[J]. 广东工业大学学报, 2022, 39(02): 1-11.
[5] 梁俊伟, 罗向龙, 杨智, 梁颖宗, 陈健勇, 陈颖. 基于PC-SAFT的混合工质筛选与有机朗肯循环系统优化[J]. 广东工业大学学报, 2022, 39(02): 91-98.
[6] Gary Yen, 栗波, 谢胜利. 地球流体动力学模型恢复的长短期记忆网络渐进优化方法[J]. 广东工业大学学报, 2021, 38(06): 1-8.
[7] 王东, 黄瑞元, 李伟政, 黄之峰. 面向抓取任务的移动机器人停靠位置优化方法研究[J]. 广东工业大学学报, 2021, 38(06): 53-61.
[8] 郑思远, 崔苗, 张广驰. 基于强化学习的无人机安全通信轨迹在线优化策略[J]. 广东工业大学学报, 2021, 38(04): 59-64.
[9] 涂俊平, 黄计康, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 水平光滑管内R245fa轴向均匀沸腾传热特性实验研究[J]. 广东工业大学学报, 2020, 37(06): 71-77.
[10] 唐超兰, 谢义. 6061铝合金铣削工艺参数多目标优化[J]. 广东工业大学学报, 2020, 37(05): 87-93.
[11] 陈宇鹏, 高伟强, 卢一光. 手把手示教喷涂机器人的示教数据优化方法[J]. 广东工业大学学报, 2020, 37(04): 21-26.
[12] 陈友鹏, 陈璟华. 基于鲸鱼优化参数的最小二乘支持向量机短期负荷预测方法[J]. 广东工业大学学报, 2020, 37(03): 75-81.
[13] 郑晓生, 罗俊伟, 卢沛, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 采用R1234ze(E)/R245fa的非共沸混合工质有机朗肯循环系统实验研究[J]. 广东工业大学学报, 2020, 37(03): 114-120.
[14] 王羽鹏, 罗向龙, 梁俊伟, 陈健勇, 杨智, 陈颖. 有机朗肯循环系统工质设计与系统参数的同步优化[J]. 广东工业大学学报, 2020, 37(01): 69-80.
[15] 谭艺枝, 陈宝仁. 无线携能传输协同中继非正交多址接入系统的速率优化设计[J]. 广东工业大学学报, 2020, 37(01): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!