广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (01): 50-55.doi: 10.12052/gdutxb.210064

• • 上一篇    下一篇

基于事件触发脉冲控制的具有ROUs和RONs的非线性多智能体系统的领导跟随一致性研究

谷志华, 彭世国, 黄昱嘉, 冯万典, 曾梓贤   

  1. 广东工业大学 自动化学院,广东 广州 510006
  • 收稿日期:2021-04-25 出版日期:2023-01-25 发布日期:2023-01-12
  • 作者简介:谷志华(1995-),男,硕士研究生,主要研究方向为多智能体系统一致性问题、非线性系统、脉冲控制,E-mail:498541923@qq.com
  • 基金资助:
    国家自然科学基金资助项目(61973092) ;广东省基础与应用基础研究基金资助项目(2019A1515012104)

Leader-following Consensus of Nonlinear Multi-agent Systems with ROUs and RONs via Event-triggered Impulsive Control

Gu Zhi-hua, Peng Shi-guo, Huang Yu-jia, Feng Wan-dian, Zeng Zi-xian   

  1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-04-25 Online:2023-01-25 Published:2023-01-12

摘要: 设计了一个基于Lyapunov函数的事件触发函数,并在此基础上研究了一类具有随机发生不确定性和随机发生非线性的多智能体系统在事件触发脉冲控制策略下的领导跟随一致性。与人为设置脉冲时刻序列的控制方式不同,事件触发脉冲控制策略中脉冲控制时刻的产生依赖于事件触发函数,且当触发条件被满足时才激发脉冲控制,从而减少不必要的控制次数以及系统的资源消耗。基于脉冲微分方程理论、代数图论和Lyapunov稳定性理论,给出了受控多智能体系统实现领导跟随一致性所需要满足的充分性条件,同时证明了Zeno行为可以被排除。最后,通过Matlab实例仿真验证了本文理论结果的有效性。

关键词: 随机发生不确定性, 随机发生非线性, 多智能体系统, 事件触发脉冲控制, 领导跟随一致性

Abstract: In term of the event-trigger impulsive mechanism, this paper designs a new event triggering function based on the Lyapunov function, and the leader-following consensus of multi-agent systems with randomly occurring uncertainties and randomly occurring nonlinearities is studied. Different from the control method of artificially setting the impulse time sequence, the generation of the impulsive moment depends on the designed triggering function, and when the trigger condition is met, the impulsive control is activated to reduce unnecessary control times and resource consumption. Based on impulsive differential equation theory, algebraic graph theory, and Lyapunov stability theory, the sufficiency conditions that controlled multi-agent systems can achieve the leader-following consensus are given. Meanwhile, the Zeno behavior can be excluded. Finally, the feasibility of the obtained results is verified by a numerical example.

Key words: randomly occurring uncertainties, randomly occurring nonlinearities, multi-agent systems, event-triggered impulsive control, leader-following consensus

中图分类号: 

  • TP273
[1] OLFATI-SABER R, FAX J A, MURRAY R M. Consensus and cooperation in networked multi-agent systems [J]. Proceedings of the IEEE, 2007, 95(1): 215-233.
[2] YU W, ZHENG W X, CHEN G, et al. Second-order consensus in multi-agent dynamical systems with sampled position data [J]. Automatica, 2011, 47(7): 1496-1503.
[3] ZHENG Y, ZHAO Q, MA J, et al. Second-order consensus of hybrid multi-agent systems [J]. Systems & Control Letters, 2019, 125: 51-58.
[4] 张弘烨, 彭世国. 基于模型简化法的含有随机时延的多智能体系统一致性研究[J]. 广东工业大学学报, 2019, 36(2): 86-90.
ZHANG H Y, PENG S G. A research on the consensus problem of multi-agent systems with random time delays based on model reduction [J]. Journal of Guangdong University of Technology, 2019, 36(2): 86-90.
[5] WANG T, ZHANG H, ZHAO Y. Average consensus of multi-agent systems under directed topologies and binary-valued communications [J]. IEEE Access, 2018, 6: 55995-56006.
[6] 张振华, 彭世国. 二阶多智能体系统拓扑切换下的领导跟随一致性[J]. 广东工业大学学报, 2018, 35(2): 75-80.
ZHANG Z H, PENG S G. Leader-following consensus of second-order multi-agent systems with switching topology [J]. Journal of Guangdong University of Technology, 2018, 35(2): 75-80.
[7] WANG X, SU H. Self-triggered leader-following consensus of multi-agent systems with input time delay [J]. Neurocomputing, 2019, 330: 70-77.
[8] DAI J, GUO G. Event-triggered leader-following consensus for multi-agent systems with semi-Markov switching topologies [J]. Information Sciences, 2018, 459: 290-301.
[9] DING L, HAN Q L, GUO G. Network-based leader-following consensus for distributed multi-agent systems [J]. Automatica, 2013, 49(7): 2281-2286.
[10] HU J, WANG Z, GAO H, et al. Robust sliding mode control for discrete stochastic systems with mixed time delays, randomly occurring uncertainties, and randomly occurring nonlinearities [J]. IEEE Transactions on Industrial Electronics, 2011, 59(7): 3008-3015.
[11] HU M, GUO L, HU A, et al. Leader-following consensus of linear multi-agent systems with randomly occurring nonlinearities and uncertainties and stochastic disturbances [J]. Neurocomputing, 2015, 149: 884-890.
[12] LI D, MA J, ZHU H, et al. The consensus of multi-agent systems with uncertainties and randomly occurring nonlinearities via impulsive control [J]. International Journal of Control, Automation and Systems, 2016, 14(4): 1005-1011.
[13] XU Y J, PENG S G, GUO A Y. Leader-following consensus of nonlinear delayed multi-agent systems with randomly occurring uncertainties and stochastic disturbances under impulsive control input [J]. International Journal of Control, Automation and Systems, 2018, 16(2): 566-576.
[14] HU G. Robust consensus tracking for an integrator-type multi-agent system with disturbances and unmodelled dynamics [J]. International Journal of Control, 2011, 84(1): 1-8.
[15] HE W, CHEN G, HAN Q L, et al. Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control [J]. Information Sciences, 2017, 380: 145-158.
[16] DIMAROGONAS D V, JOHANSSON K H. Event-triggered control for multi-agent systems[C]//Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference. Shanghai : IEEE, 2009: 7131-7136.
[17] LIU B, LIU D N, DOU C X. Exponential stability via event-triggered impulsive control for continuous-timedynamicalsystems[C]//Proceedings of the 33rd Chinese Control Conference. Nanjing : IEEE, 2014: 4056-4060.
[18] TAN X, CAO J, LI X. Consensus of leader-following multiagent systems: a distributed event-triggered impulsive control strategy [J]. IEEE Transactions on Cybernetics, 2018, 49(3): 792-801.
[19] LI X, PENG D, CAO J. Lyapunov stability for impulsive systems via event-triggered impulsive control [J]. IEEE Transactions on Automatic Control, 2020, 65(11): 4908-4913.
[20] ZHANG Z Z, PENG S G, LIU D R, et al. Leader-following mean-square consensus of stochastic multiagent systems with ROUs and RONs via distributed event-triggered impulsive control [J]. IEEE Transactions on Cybernetics, 2022, 52(3): 1836-1849.
[21] CHEN T, PENG S G, ZHANG Z Z. Finite-time consensus of leader-following non-linear multi-agent systems via event-triggered impulsive control [J]. IET Control Theory & Applications, 2021, 15(7): 926-936.
[22] WANG Z, LAURIA S, LIU X. Exponential stability of uncertain stochastic neural networks with mixed time-delays [J]. Chaos, Solitons & Fractals, 2007, 32(1): 62-72.
[1] 谢光强, 许浩然, 李杨, 陈广福. 基于多智能体强化学习的社交网络舆情增强一致性方法[J]. 广东工业大学学报, 2022, 39(06): 36-43.
[2] 曲燊, 车伟伟. FDI攻击下非线性多智能体系统分布式无模型自适应控制[J]. 广东工业大学学报, 2022, 39(05): 75-82.
[3] 刘建华, 李佳慧, 刘小斌, 穆树娟, 董宏丽. 事件触发机制下的多速率多智能体系统非脆弱一致性控制[J]. 广东工业大学学报, 2022, 39(05): 102-111.
[4] 曾梓贤, 彭世国, 黄昱嘉, 谷志华, 冯万典. 两种不同脉冲欺骗攻击下随机多智能体系统的均方拟一致性[J]. 广东工业大学学报, 2022, 39(01): 71-77.
[5] 谢光强, 赵俊伟, 李杨, 许浩然. 基于多集群系统的车辆协同换道控制[J]. 广东工业大学学报, 2021, 38(05): 1-9.
[6] 张弘烨, 彭世国. 基于模型简化法的含有随机时延的多智能体系统一致性研究[J]. 广东工业大学学报, 2019, 36(02): 86-90,96.
[7] 张振华, 彭世国. 二阶多智能体系统拓扑切换下的领导跟随一致性[J]. 广东工业大学学报, 2018, 35(02): 75-80.
[8] 罗贺富, 彭世国. 多时变时滞的多智能体系统的分布式编队控制[J]. 广东工业大学学报, 2017, 34(04): 89-96.
[9] 唐平; 杨宜民;. 多智能体系统与足球机器人系统体系结构研究[J]. 广东工业大学学报, 2001, 18(4): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!