广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (03): 48-53.doi: 10.12052/gdutxb.230036
鄢中华, 陈星宇, 刘文杰
Yan Zhong-hua, Chen Xing-yu, Liu Wen-jie
摘要: 表面增强拉曼散射(Surface-enhanced Raman Scattering, SERS)是一种快速且灵敏度高的分子检测技术。拥有高灵敏的、均匀的拉曼信号是光谱技术的必要因素,同时拉曼衬底结构通常也面临复杂的工艺和高昂的成本。为了实现高性能SERS,本文采用多层金-银(Au-Ag)交替沉积、退火和脱合金技术制备多孔Au-Ag复合纳米结构,该方法能用于大面积制备,且制备工艺简便。通过在合适的温度下退火,可以在Au-Ag复合纳米结构表面形成大量纳米孔。这些纳米孔可以牢固地分布在表面形成热点。利用时域有限差分(Finite-difference Time-domain, FDTD)法模拟电场分布,结果表明在Au-Ag复合纳米结构表面可以产生极大的局域场增强效果。实验结果表明SERS检测具有良好的均匀性和高灵敏度。SERS基底检测罗丹明6G(Rhodamine 6G, R6G) 分子的增强因子达到2.4×105,相对标准偏差(Relative Standard Deviation, RSD)低至6.9%,对R6G分子的最低检测浓度可达10-11 mol/L。所提出的Au-Ag复合纳米结构及其制备工艺在制备高灵敏度的、高均匀性的SERS基底方面具有很大的潜力。
中图分类号:
[1] BAPTISTA P, PEREIRA E, EATON P. Gold nanoparticles for the development of clinical diagnosis methods [J]. Analytical and Bioanalytical Chemistry, 2008, 391(3): 943-950. [2] LIM W Q, GAO Z. Plasmonic nanoparticles in biomedicine [J]. Nano Today, 2016, 11(2): 168-188. [3] ZHENG T, LI G G, ZHOU F, et al. Gold-nanosponge-based multistimuli-responsive drug vehicles for targeted chemo-photothermal therapy [J]. Adv Mater, 2016, 28(37): 8218-8226. [4] D'ACUNTO M, CIONI P, GABELLIERI E, et al. Exploiting gold nanoparticles for diagnosis and cancer treatments [J]. Nanotechnology, 2021, 32(19): 192001. [5] WANG P, PANG S, PEARSON B, et al. Rapid concentration detection and differentiation of bacteria in skimmed milk using surface enhanced Raman scattering mapping on 4-mercaptophenylboronic acid functionalized silver dendrites [J]. Analytical and Bioanalytical Chemistry, 2017, 409(8): 2229-2238. [6] FENG S, GAO F, CHEN Z, et al. Determination of alpha-tocopherol in vegetable oils using a molecularly imprinted polymers-surface-enhanced Raman spectroscopic biosensor [J]. Journal of Agricultural and Food Chemistry, 2013, 61(44): 10467-10475. [7] YUE S, YE W, XU Z. SERS monitoring of the Fenton degradation reaction based on microfluidic droplets and alginate microparticles [J]. Analyst, 2019, 144(19): 5882-5889. [8] YU J, YANG M, LI Z, et al. Hierarchical particle-in-quasicavity architecture for ultratrace in situ Raman sensing and its application in real-time monitoring of toxic pollutants [J]. Analytical Chemistry, 2020, 92(21): 14754-14761. [9] CAMPION A, KAMBHAMPATI P. Surface-enhanced Raman scattering [J]. Chemical Society Reviews, 1998, 27: 241-250. [10] LIU Z, YANG Z, PENG B, et al. Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins [J]. Advanced Materials, 2014, 26(15): 2431-2439. [11] FANG J, DU S, LEBEDKIN S, et al. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy [J]. Nano Letters, 2010, 10(12): 5006-5013. [12] LI Y, ZHOU L, TANG L H, et al. Improved surface enhanced Raman scattering based on hybrid Au nanostructures for biomolecule detection[J]. IEEE Photonics Journal, 2016, 8(6): 6806007. [13] LEE H, LEE J H, JIN S M, et al. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering [J]. Nano Letters, 2013, 13(12): 6113-6121. [14] WANG D, ZHU W, CHU Y, et al. High directivity optical antenna substrates for surface enhanced Raman scattering [J]. Advanced Materials, 2012, 24(32): 4376-4380. [15] HATAB N A, HSUEH C H, GADDIS A L, et al. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy [J]. Nano Letters, 2010, 10(12): 4952-4955. [16] SHEN Y, CHENG X, LI G, et al. Highly sensitive and uniform surface-enhanced Raman spectroscopy from grating-integrated plasmonic nanograss [J]. Nanoscale Horizons, 2016, 1(4): 290-297. [17] WEI X, FAN Q, LIU H, et al. Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering [J]. Nanoscale, 2016, 8(34): 15689-15695. [18] 赵韦人, 孙长军, 张伟, 等. 磁场调制的水基四氧化三铁磁流体的光学透射率[J]. 广东工业大学学报, 2009, 26(4): 30-33. ZHAO W R, SUN C J, ZHANG W, et al. Magnetic field-controlled transmission of aqueous Fe3O4 ferrofluids [J]. Journal of Guangdong University of Technology, 2009, 26(4): 30-33. [19] FU Z, SHEN Z, FAN Q, et al. Preparation of multi-functional magnetic-plasmonic nanocomposite for adsorption and detection of thiram using SERS [J]. Journal of Hazardous Materials, 2020, 392(15): 122356. [20] XU J, DU J, JING C, et al. Facile detection of polycyclic aromatic hydrocarbons by a surface-enhanced Raman scattering sensor based on the Au coffee ring effect[J]. ACS Applied Materials & Interfaces, 2014, 6(9) : 6891-6897. [21] ZHANG C H, ZHU J, LI J J, et al. Small and sharp triangular silver nanoplates synthesized utilizing tiny triangular nuclei and their excellent SERS activity for selective detection of thiram residue in soil [J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17387-17398. [22] THACKER V V, HERRMANN L O, SIGLE D O, et al. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering [J]. Nature Communications, 2014, 5(13): 3448. [23] NIU W, CHUA Y A, ZHANG W, et al. Highly symmetric gold nanostars: crystallographic control and surface-enhanced Raman scattering property [J]. Journal of the American Chemical Society, 2015, 137(33): 10460-10463. [24] LU G, FORBES T Z, HAES A J. SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size [J]. Analyst, 2016, 141(17): 5137-5143. [25] KOYA A N, ZHU X, OHANNESIAN N, et al. Nanoporous metals: from plasmonic properties to applications in enhanced spectroscopy and photocatalysis [J]. ACS Nano, 2021, 15(4): 6038-6060. [26] LIU G, LI K, ZHANG Y, et al. A facile periodic porous Au nanoparticle array with high-density and built-in hotspots for SERS analysis [J]. Applied Surface Science, 2020, 527: 146807. [27] MANDAL M, RANJAN JANA N, KUNDU S, et al. Synthesis of Aucore-Agshell type bimetallic nanoparticles for single molecule detection in solution by SERS method [J]. Journal of Nanoparticle Research, 2004, 6: 53-56. [28] GAO C, HU Y, WANG M, et al. Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au [J]. Journal of the American Chemical Society, 2014, 136(20): 7474-7479. [29] YAN Y, RADU A I, RAO W, et al. Mesoscopically bicontinuous Ag-Au hybrid nanosponges with tunable plasmon resonances as bottom-up substrates for surface-enhanced Raman spectroscopy (SERS) [J]. Chemistry of Materials, 2016, 28: 7673-7682. [30] TANG H, MENG G, LI Z, et al. Hexagonally arranged arrays of urchin-like Ag hemispheres decorated with Ag nanoparticles for surface-enhanced Raman scattering substrates [J]. Nano Research, 2015, 8(7): 2261-2270. [31] WU G, CAO F, ZHAO P, et al. Novel periodic bilayer Au nanostructures for ultrasensitive surface-enhanced Raman spectroscopy [J]. Advanced Materials Interfaces, 2018, 5(20): 1800820. [32] 蒋力立, 唐新桂, 唐振方. 退火温度对锆酸铅薄膜光学性能的影响[J]. 广东工业大学学报, 2005, 22(1): 7-9. JIANG L L, TANG X G, TANG Z F. Effect of annealing temperature on the optical properties of PbZrO3 thin films [J]. Journal of Guangdong University of Technology, 2005, 22(1): 7-9. [33] PALIK E D. Handbook of optical constants of solids [M]. Boston: Academic Press, 1997: 189-190. [34] RIOUX D, S VALLIÈRES, BESNER S, et al. An analytic model for the dielectric function of Au, Ag, and their alloys [J]. Advanced Optical Materials, 2014, 2(2): 176-182. |
[1] | 胡晓敏, 许万森, 段宇晖, 李敏. 基于智能优化的协作治疗调度算法[J]. 广东工业大学学报, 2023, 40(05): 21-33. |
[2] | 杨戈, 李萍. 表面增强拉曼散射与分子印迹技术快速检测痕量辛基酚的试验研究[J]. 广东工业大学学报, 2023, 40(05): 113-116. |
[3] | 肖志贤, 林福民. 基于两垂直方向虚拟平移的波达方向判定算法[J]. 广东工业大学学报, 2016, 33(01): 45-50. |
[4] | 张浩, 龙建军, 邸鹏飞. 海底冷泉渗漏气泡-海水两相介质均匀化方法和实验研究[J]. 广东工业大学学报, 2015, 32(04): 72-76. |
[5] | 张浩荣, 陈平华, 熊建斌. 基于蚁群模拟退火算法的云环境任务调度[J]. 广东工业大学学报, 2014, 31(3): 77-82. |
[6] | 李新喜, 袁晓娇, 张国庆, 张新河, 张磊. 锂离子电池硅/石墨复合负极材料的制备及性能研究[J]. 广东工业大学学报, 2014, 31(2): 27-31. |
[7] | 张康,苏成悦,付倩,薛涛,张春华. 基于均匀照明的光学器件研究[J]. 广东工业大学学报, 2013, 30(1): 87-91. |
[8] | 吴加荣. 讨论Burgers方程的概率空间与特征正交空间的最小平均距离问题[J]. 广东工业大学学报, 2012, 29(4): 72-76. |
[9] | 杨洪镅1,2. 强夯法在湿陷性黄土地基中的应用[J]. 广东工业大学学报, 2012, 29(1): 15-18. |
[10] | 张小玲1 , 刘海林2 , 李学强3. 基于模拟退火的自适应调节位置区数目的位置区规划[J]. 广东工业大学学报, 2010, 27(4): 28-31. |
[11] | 邹庆胜, 汪仁煌, 明俊峰. 基于机器视觉的瓷砖多参数分类系统的设计[J]. 广东工业大学学报, 2010, 27(4): 46-49. |
[12] | 李凌宇, 郭贵法, 许锦标. 基于模拟退火遗传算法的PID参数整定与优化[J]. 广东工业大学学报, 2010, 27(2): 80-83. |
[13] | 王海龙1 , 彭美春1 , 王贤烽2. 生物柴油掺烧比的优化研究[J]. 广东工业大学学报, 2010, 27(1): 33-38. |
[14] | 杨晚生; 张艳梅; 张吉光; . 新型静压式送风道空气动力性能的实验研究[J]. 广东工业大学学报, 2004, 21(2): 81-85. |
[15] | 刘海林; 滕少华; 刘永清; . 强化局部搜索能力的遗传算法[J]. 广东工业大学学报, 2002, 19(4): 13-15. |
|