Journal of Guangdong University of Technology ›› 2017, Vol. 34 ›› Issue (01): 55-59.doi: 10.12052/gdutxb.150134

Previous Articles     Next Articles

Influence of Grain Size and Orientation of Electrical Silicon Steel on Work Hardening in the Disc Slitting

Wang Can-ming, Yan Qiu-sheng, Lu Jia-bin, Qiu Xuan-feng, Zhang Xiao-wei   

  1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2015-12-10 Online:2017-01-09 Published:2017-01-09

Abstract:

Silicon steel sheets with different grain size and orientation are selected to conduct the disc slitting experiment, and the slitting surface morphology and work hardening behavior are studied by analyzing microstructure morphology and micro-hardness. The difference of metallographic structure is great before and after slitting: silicon steel with smaller grain size has larger deformation, while silicon steel with larger grain size is easy to generate the transgranular fracture along with obvious twin structure. The grain size and orientation of silicon steel have a great influence on work hardening. When the grain size is close, the work hardening ability of the non-oriented silicon steel is bigger than that of the grain-oriented silicon steel. When grain orientation of silicon steel is the same, the larger the grain size, the bigger the changing of hardness. The degree of work hardening is directly related to the material deformation in the disc slitting. The fiercer the deformation, the larger the work hardening. Grain orientation of non-oriented silicon steel becomes orderly, which greatly improves the ability to resist plastic deformation. Deformation mechanism of fine granular material is dominated by dislocation slip and the twin deformation mainly occurs in large granular silicon steel.

Key words: electrical silicon steel, grain size, grain orientation, work hardening

CLC Number: 

  • TP142.1

[1] 叶明德. 金属板材精密裁切100问[M]. 北京:冶金工业出版社, 2010:1-2.
[2] 何忠治, 赵宇, 罗海文. 电工钢[M]. 北京:冶金工业出版社, 2012:26-27.
[3] 孙述利, 郭东城, 刘江, 等. 形变对无取向硅钢50W470组织和力学性能的影响[J]. 特殊钢, 2005, 26(5):14-15. SUN S L, GUO D C, LIU J, et al. Effect of deformation on structure and mechanical properties of non-orientation silicon steel 50W470[J]. Special Steel, 2005, 26(5):14-15.
[4] 王黎. 负间隙精密冲裁加工硬化与微观组织研究[D]. 郑州:中原工学院机电学院, 2014.
[5] 李硕本, 金淼, 彭加耕. 关于板材加工硬化性能评定方法的探讨[J]. 塑性工程学报, 2001, 8(2):59-62. LI S B, JIN M, PENG J G. A method for evaluating the property of work-hardening of sheet metal[J]. Journal of Plasticity Engineering, 2001, 8(2):59-62.
[6] 刘海军, 朱定一, 胡真明, 等. 晶粒尺寸对Fe-20Mn-3Cu-1.3C合金钢加工硬化行为的影响[J]. 材料热处理学报, 2013, 34(4):85-89. LIU H J, ZHU D Y, HU Z M, et al. Influence of grain size on work hardening behavior of the Fe-20Mn-3Cu-1.3C steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(4):85-89.
[7] UEJI R, TSUCHIDA N, TERADA D, et al. Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure[J]. Scripta Materialia, 2008, 59(9):963-966.
[8] KLUSEMANN B, SVENDSEN B, VEHOFF H. Modeling and simulation of deformation behavior, orientation gradient development and heterogeneous hardening in thin sheets with coarse texture[J]. International Journal of Plasticity, 2013, 50(1):109-126.
[9] 宋仁伯, 项建英, 侯东坡, 等. 316L不锈钢热加工硬化行为及机制[J]. 金属学报, 2001, 46(1):57-61. SONG R B, XIANG J Y, HOU D P, et al. Behavior and mechanism of hot work-hardening for 316L stainless steel[J]. Acta Metallurgica Sinica, 2001, 46(1):57-61.
[10] 阎秋生, 赖志民, 路家斌, 等. 金属板材无毛刺精密分切新工艺分切断面形貌特征研究[J]. 塑性工程学报, 2013, 20(2):20-14. YAN Q S, LAI Z M, LU J B, et al. Study of section morphology characteristics in precision slitting technology with burr-free for sheet metal[J]. Journal of Plasticity Engineering, 2013, 20(2):20-14.
[11] 中国国家标准化管理委员会. 金属平均晶粒度:GB/T6394-2002[S]. 北京:中国标准出版社, 2002.
[12] 毛卫民, 杨平. 电工钢的材料学原理[M]. 北京:高等教育出版社, 2013:41-43.
[13] 张正贵, 王大鹏. 无取向硅钢的织构与磁性[M]. 北京:冶金工业出版社, 2012:12-13.
[14] 毛卫民. 金属材料的晶体学织构与各向异性[M]. 北京:科学出版社, 2002:5-6.
[15] YU Q, SHAN Z W, LI J, et al. Strong crystal size effect on deformation twinning[J]. Nature, 2010, 463(7279):335-338.

[1] ZHU Yuan-Xin, LIU Fu-Chun. Identification Study of Sedimentary Environment Based on Fuzzy Neural Network [J]. Journal of Guangdong University of Technology, 2015, 32(2): 48-52.
[2] ZHANG Guo-fu,ZHU Yan-juan,ZHANG Wei,XIONG Hui-fang,LIN Tian-jin. Characterization of the Main Function Parameters of Coated Paper Kaolin [J]. Journal of Guangdong University of Technology, 2006, 23(2): 18-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!