Journal of Guangdong University of Technology ›› 2017, Vol. 34 ›› Issue (02): 63-68.doi: 10.12052/gdutxb.160084

Previous Articles     Next Articles

Unit Commitment Considering Large-scale Integration of Electric Vehicles

Chen Jing-hua1, Ding Lin-jun1, Guo Zhuang-zhi2, Liang Li-li1, Li Jin-bei1   

  1. 1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
    2. School of Electrical Information Engineering, Henan University of Engineering, Zhengzhou, 451191, China
  • Received:2016-06-13 Online:2017-03-09 Published:2017-03-09

Abstract:

Research is conducted on the unit commitment optimization after HEVs mass connected to the power system. HEVs charge and discharge quantity and thermal power unit output in each period are used as optimizable scheduling variables and the coal-fired minimum cost of thermal power generating unit as the objective function. And under the use of complementary constraints and optimization extreme value theory, transforming unit combination problem into nonlinear programming for continuous space, a complementary constraint optimization model of power system unit combining HEVs mass into the network is established. Then the smooth NCP function is used to deal with the complementary constraint optimization model, which is transformed into a general nonlinear programming problem, and the solution is solved by using the primal dual interior point method. A simulation experiment is carried out with the optimal combination of the units in the 10 unit system 24 h as an example to verify the validity and feasibility of the proposed algorithm.

Key words: hybird electric vehicles, charge and discharge, unit commitment, complementary constraints, smooth function

CLC Number: 

  • TM731

[1] 马玲玲, 杨军, 付聪, 等. 电动汽车充放电对电网影响研究综述[J]. 电力系统保护与控制, 2013, 41(3):140-148.MA L L, YANG J, FU C, et al. Review on impact of electric car charging and discharging on power grid[J]. Power System Protection and Control, 2013, 41(3):140-148.
[2] 赵俊华, 文福拴, 薛禹胜, 等. 计及电动汽车和风电出力不确定性的随机经济调度[J]. 电力系统自动化, 2010, 34(20):22-29.ZHAO J H, WEN F S, XUE Y S, et al. Power system stochastic economic dispatch considering uncertain outputs from plug-in electric vehicles and wind generators[J]. Automation of Electric Power System, 2010, 34(20):22-29.
[3] PARKS K, DENHOLM P, MARKEL T. Costs and emissions associated with plug-in hybrid electric vehicle charging in the Xcel energy Colorado service territory[R/OL]. (2014-05-16)[2016-06-10] http://www.nrel.gov/docs/fy07os-ti/41410.pdf 2007.
[4] DICKERMAN L, HARRISON J. A new car, a new grid[J]. IEEE Power and Energy Magazine, 2010, 8(2):55.
[5] 孟安波, 卢海明, 郭壮志. 计及电动汽车规模化入网的发电优化调度[J]. 电气应用, 2015, 34(16):137-141.MENG A B, LU H M, GUO Z Z. The generation scheduling considering large-scale integration of electric vehicles[J]. Electrical Applications, 2015, 34(16):137-141.
[6] 胡泽春, 宋永华, 徐智威, 等. 电动汽车接入电网的影响与利用[J]. 中国电机工程学报, 2012, 32(4):1-10.HU Z C, SONG Y H, XU Z W, et al. Impacts and utilization of electric vehicles integration into power systems[J]. Proceedings of the CSEE, 2012, 32(4):1-10.
[7] 张志伟, 顾丹珍. 电动汽车智能充电策略研究[J]. 中国电力, 2013, (6):91-95.ZHANG Z W, GU D Z. Study on strategies for smart charging of electric vehicles[J]. Electric Power, 2013, (6):91-95.
[8] BASU M. Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II[J]. International Journal of Electrical Power & Energy Systems, 2008, 30(2):140-149.
[9] 陆凌蓉, 文福拴, 薛禹胜, 等. 计及可入网电动汽车的电力系统机组最优组合[J]. 电力系统自动化, 2011, 35(21):16-20.LU L R, WEN F S, XUE Y S, et al. Unit commitment in power system with plug-in electric vehicles[J]. Automation of Electric Power System, 2011, 35(21):16-20.
[10] SABER A Y, VENAYAGAMOORTHY G K. Intelligent unit commitment with vehicle-to-grid-A cost-emission optimization[J]. Journal of Power Sources, 2010, 195(3):898-911.
[11] RAGHUNATHAN A U, BIEGLER L T. An interior point method for mathematical programs with complementarity constraints (MPCCs)[J]. SIAM Journal on Optimization, 2005, 15(3):720-750.
[12] 龚小玉. 互补问题最优化算法研究及其应用[D]. 武汉:武汉大学水利水电学院, 2013.
[13] 蔡广林, 韦化. 基于非线性互补方法的内点最优潮流算法[J]. 电网技术, 2005, (21):25-30.CAI G L, WEI H. An interior point optimal power flow algorithm based on nonlinear complementarity method[J]. Power System Technology, 2005, (21):25-30.
[14] 张琼. 求解0-1非线性整数规划问题的非单调光滑牛顿算法[D]. 天津:天津大学理学院, 2010.
[15] 杨洪明, 童小娇, 赖明勇. 基于光滑非线性互补函数的电力市场动态研究[J]. 电网技术. 2006, 30(22):42-48.YANG H M, TONG X J, LAI M Y. Research on dynamic status of electricity market based on smooth nonlinear complementary function[J]. Power System Technology, 2006, 30(22):42-48.
[16] RALPH D, WRIGHT S J. Some properties of regularization and penalization schemes for MPECs[J]. Optimization Methods and Software, 2004, 19(5):527-556.
[17] WEI H, SASAKI H, KUBOKAWA J, et al. An interior point nonlinear programming for optimal power flow problems with a novel data structure[J]. Power Systems, IEEE Transactions on, 1998, 13(3):870-877.
[18] 何明杰, 彭春华, 曹文辉, 等. 考虑电动汽车规模化入网的动态经济调度[J]. 电力自动化设备, 2013, 33(9):82-88.HE M J, PENG C H, CAO W H, et al. Dynamic economic dispatch considering large-scale integration of electric vehicles[J]. Electric Power Automation Equipment, 2013, 33(9):82-88.
[19] 韩学山, 柳焯. 考虑发电机组输出功率速度限制的最优机组组合[J]. 电网技术, 1994, 18(6):11-16.HAN X S, LIU Z. Optimal unit commitment considering unit's ramp-rate limits[J]. Power System Technology, 1994, 18(6):11-16.

[1] Ma Liu-yang, Meng An-bo, Yin Hao. Unit Commitment Optimization Based on Hybrid Crisscross Optimization Algorithm [J]. Journal of Guangdong University of Technology, 2017, 34(06): 68-72,77.
[2] Chen Jing-hua, Liang Li-li, Ding Lin-jun, Zhou Jun, Liu Guo-xiang. Unit Commitment Optimization Based on Chance-constrained Programming in Wind Power Integrated System [J]. Journal of Guangdong University of Technology, 2017, 34(01): 50-54,64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!