Journal of Guangdong University of Technology ›› 2018, Vol. 35 ›› Issue (03): 90-94.doi: 10.12052/gdutxb.180015

Previous Articles     Next Articles

A Research of a Recommender System Based on Customer Behavior Modeling by Mining Association Rules

Lin Sui, Zheng Zhi-hao   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2018-01-24 Online:2018-05-09 Published:2018-05-24
  • Supported by:
     

Abstract: With the development of e-commerce in China, the traditional e-business service mode can no longer meet people's shopping needs. Personalized recommendation for customers is a problem worthy of study. In this research, the improvement of Apriori algorithm is used to mine user interest information and the user correlation. Then, a user behavior model is set up, and can recommend the goods of interest, and improve the user's purchase experience. Experiments show that the improved Apriori algorithm improves the accuracy and speed of the recommendation system.

Key words: E-commerce, personalized recommendation, the improvement of Apriori algorithm, user behavior modeling

CLC Number: 

  • TP311
[1] 刘建国, 周涛, 汪秉宏. 个性化推荐系统的研究进展[J]. 自然科学进展, 2009, 19(1):1-15.LIU J G, ZHOU T, WANG B H. Research progress of personalized recommendation[J]. Progress in Natural Science, 2009, 19(1):1-15.
[2] INGERSOLL G. Introducing apache mahout:scalable, commercial-friendly machine learning for building intelligent applications[J]. IBM, 2009,
[3] ESTEVES R M, RONG C. Using mahout for clustering wikipedia's latest articles:a comparison between K-means and fuzzy c-means in the cloud[C]//2011 IEEE Third International Conference on Cloud Computing Technology and Science. Athens:IEEE, 2011:565-569.
[4] SHVACHKO K, KUANG H, RADIA S, et al. The hadoop distributed file system[C]//2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST). Incline Village:IEEE Computer Society, 2010:1-10.
[5] TAYLOR R C. An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics[J]. BMC Bioinformatics, 2010, 11(S12):S1
[6] ZHANG Z Q, QIAN S J. The research of e-commerce recommendation system based on collaborative filtering technology[C]//Advances in Computer Science and Information Engineering. Berlin:Springer, 2012:507-512.
[7] TYAGI S, BHARADWAJ K K. A hybrid knowledge-based approach to collaborative filtering for improved recommendations[J]. International Journal of Knowledge-Based and Intelligent Engineering Systems, 2014, 18(2):121-133.
[8] 伍育红. 聚类算法综述[J]. 计算机科学, 2015, 42(6A):491-499.WU Y H. General over view on clustering[J]. Computer Science, 2015, 42(6A):491-499.
[9] 张玉洁, 杜雨露, 孟祥武. 组推荐系统及其应用研究[J]. 计算机学报, 2016, 39(4):745-764.ZHANG Y J, DU Y L, MENG X W. Research on group recommender systems and their applicatIons[J]. Chinese Journal of Computers, 2016, 39(4):745-764.
[10] 胡惠成, 陈平华. 一种融合隐式信任关系的推荐算法[J]. 广东工业大学学报, 2017, 34(3):43-48.HU H C, CHEN P H. Research on implicit trust relationship aware recommendation algorithm[J]. Journal of Guangdong University of Technology, 2017, 34(3):43-48.
[11] 胡新明. 基于商品属性的电子商务推荐系统研究[D]. 武汉:华中科技大学, 2012.
[12] 王勇, 易庭. 基于距离衰减和评分趋势改进的协同推荐算法[J]. 广东工业大学学报, 2015, 32(2):38-42.WANG Y, YI T. A distance decay and score trends impr- oved collaborative recommendation algorithm[J]. Journal of Guangdong University of Technology, 2015, 32(2):38-42.
[13] 应毅, 刘亚军, 陈诚. 基于云计算技术的个性化推荐系统[J]. 计算机工程与应用, 2015, 51(13):111-117.YING Y, LIU Y J, CHEN C. Personalization recommender system based on cloud-computing technology[J]. Computer Engineering and Applications, 2015, 51(13):111-117.
[14] 王洁, 汤小春. 基于社区网络内容的个性化推荐算法研究[J]. 计算机应用研究, 2011, 28(4):1248-1250.WANG J, TANG X C. Personalized recommendation algorithm research based on content in social network[J]. Application Research of Computers, 2011, 28(4):1248-1250.
[15] 杨超, 艾聪聪, 蒋斌, 等. 一种融合人口统计属性的协同过滤算法[J]. 小型微型计算机系统, 2015, 36(4):782-786.YANG C, AI C C, JIANG B, et al. Demographic attribute-based collaborative filtering algorithm[J]. Journal of Chinese Computer Systems, 2015, 36(4):782-786.
[16] 刘丽娟. 改进的Apriori算法的研究及应用[J]. 计算机工程与设计, 2017, 38(12):3324-3328.LIU L J. Research and application of improved Apriori algorithm[J]. Computer Engineering and Design,2017, 38(12):3324-3328.
[17] 张万山, 肖瑶, 梁俊杰, 等. 基于主题聚类的Web资源个性化推荐研究[J]. 微电子学与计算机, 2015,(4):35-39.ZHANG W S, XIAO Y, LIANG J J, et al. Personalized recomm-endation of web resources rased on topic clustering[J]. Microellectronics & Computer, 2015,(4):35-39.
[1] Xu Hui-ting. Decision Making and Coordination of Three-layer E-commerce Supply Chain Based on F2F [J]. Journal of Guangdong University of Technology, 2022, 39(03): 25-31.
[2] Chen Jun, Xie Wei-hong, Chen Yang-sen. A Research on Forward Trends of Mobile E-commerce [J]. Journal of Guangdong University of Technology, 2017, 34(05): 73-79.
[3] Chen Hai-xia, Zhong Ying-hong. An E-commerce Platform Anti-counterfeiting Strategy Research Based on Cumulative Prospect Theory and Evolutionary Game Theory [J]. Journal of Guangdong University of Technology, 2017, 34(04): 52-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!