Journal of Guangdong University of Technology ›› 2018, Vol. 35 ›› Issue (03): 67-71.doi: 10.12052/gdutxb.180035

Previous Articles     Next Articles

Design and Implementation of Industrial Big Data Cloud Platform for Smart Factory

Sun Wei-jun1, Xie Sheng-li1, Wang Gu-yin2, Diao Jun-wu2, Ruan Hang2   

  1. 1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
    2. CNOOC(Intelligent Manufacturing Branch) Information Technology Co. Ltd., Huizhou 516000, China
  • Received:2018-03-05 Online:2018-05-09 Published:2018-05-24
  • Supported by:
     

Abstract: According to application demand of industrial big data for smart factory, the big data cloud platform was built to achieve multi-source heterogeneous data acquisition in whole networks and whole processes, provide multi-level analysis scheme, establish data mining model library, and support the intelligent bearing production, network collaborative manufacturing and intelligent services. With the platform, petroleum refineries enhanced their core competitiveness.

Key words: industrial big data, smart factory, petroleum refinery, networked collaborative manufacturing

CLC Number: 

  • TP319
[1] 夏茂森. 流程工业智能工厂建设技术的研究[J]. 信息技术与信息化, 2013,(6):46-52.XIA M S. Research on intelligent plant construction technology of process industry[J]. Information Technology & Informatization, 2013,(6):46-52.
[2] 卫凤林, 董建, 张群. 《工业大数据白皮书(2017版)》解读[J]. 信息技术与标准化, 2017,(4):13-17.WEI F L, DONG J, ZHANG Q. Interpretation of industrial big data white paper (2017)[J]. Information Technology & Standardization, 2017,(4):13-17.
[3] Industrial Big Data. Know the future-automate processes. Software for data analysis and accurate forecasting[EB/OL]. (2015-10-23)[2018-3-5]. https://www.differentia.consulting/qlik/docs/Blue-Yonder-White-Paper-Industrial-Big-Data.pdf.
[4] 王建民. 工业大数据技术综述[J]. 大数据, 2017, 3(6):3-14.WANG J M. Survey on industrial big data[J]. Big Data Research, 2017, 3(6):3-14.
[5] 刘强, 秦泗钊. 过程工业大数据建模研究展望[J]. 自动化学报, 2016, 42(2):161-171.LIU Q, QIN S Z. Perspectives on Big Data modeling of process industries[J]. Acta Automatica Sinica, 2016, 42(2):161-171.
[6] 工业互联网产业联盟工业大数据特设组. 工业大数据技术与应用实践(2017)[M]. 北京:电子工业出版社, 2017.
[7] 罗敏明. 流程企业智能制造实践与探讨[J]. 石油化工建设, 2016, 38(1):16-18, 69.LUO M M. The practice and discussion of intelligent manufacturing in process enterprise[J]. Petroleum and Construction, 2016, 38(1):16-18, 69.
[8] MICHAEL H, NATHAN B. Lambda architecture[EB/OL]. (2013-10-23)[2018-3-5]. http://lambda-architecture.net.
[9] 陈尧. 支持多计算模式的大数据系统的研究[D].成都:电子科技大学计算机科学与工程学院,2015.
[10] 倪昀炜. 大数据时代动环集中运维管理浅析[J]. 信息技术, 2015,(11):144-146, 151.NI Y W. Analysis of power and environment centralized monitoring in the big data era[J]. Information Technology, 2015,(11):144-146, 151.
[11] 覃伟中,冯玉仲,陈定江,等. 面向智能工厂的炼化企业生产运营信息化集成模式研究[J]. 清华大学学报(自然科学版), 2015, 55(4):373-377, 469.QIN W Z, FENG Y Z, CHEN D J,et al. Study on the information integration of production and operation for smart refinery[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(4):373-377, 469.
[12] WU X D, ZHU X Q, WU G Q,et al. Data mining with big data[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1):97-107.
[13] 陈晓方, 吴仁超, 桂卫华. 工业生产中的知识自动化决策系统[J]. 中兴通讯技术, 2016, 22(5):42-46.CHEN X F, WU R C, GUI W H. Knowledge automatic decision making system in industrial production[J]. ZTE Technology Journal, 2016, 22(5):42-46.
[14] 章红波. 工业大数据挖掘分析及应用前景研究[J]. 科技创新与应用, 2016,(24):90ZHANG H B. Analysis and application prospect of industrial large data mining[J]. Technology Innovation and Application, 2016,(24):90
[15] 王喜文. 大数据驱动制造业迈向智能化[J]. 物联网技术, 2014,(12):7-8.WANG X W. Big data drives manufacturing towards intelligence[J]. Internet of Things Technologies, 2014,(12):7-8.
[16] DAYAL U, GUPTA C, VENNELAKANTI R, et al. An approach to benchmarking industrial big data applicati- ons[C]//WBDB 2014, August 5-6, 2014, Potsdam, Germany. Berlin:Springer International Publishing, 2014:45-60.
[17] 宁振波, 吴元良. 从先进制造业的发展看实施工业4.0的前提条件[J]. 航空制造技术, 2014,(18):37-40.NING Z B, WU Y L. Precondition of industrie 4.0 implementation based on the development of advanced manufacturing industry[J]. Aeronautical Manufacturing Technology, 2014,(18):37-40.
[1] Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9.
[2] Zhao Ze-xing, Shi Zhi-wei, Zuo Mao-wu. Simulating Multiple-beam Interference to Form a Photonic Lattice by Matlab GUI [J]. Journal of Guangdong University of Technology, 2020, 37(03): 63-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!