Journal of Guangdong University of Technology ›› 2019, Vol. 36 ›› Issue (05): 7-13.doi: 10.12052/gdutxb.190048

Previous Articles     Next Articles

Joint Low-Rank Representation and Graph Embedding for Unsupervised Feature Selection

Teng Shao-hua1, Feng Zhen-ye1, Teng Lu-yao2, Fang Xiao-zhao1   

  1. 1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China;
    2. Centre for Applied Informatics, Victoria University, Melbourne VIC 3011, Australia
  • Received:2019-03-25 Online:2019-08-21 Published:2019-08-06

Abstract: Dimensionality reduction becomes a significant problem due to the proliferation of high dimensional data. For dimensionality reduction, feature selection is more analytical than feature extraction. Therefore feature selection plays an important role in pattern recognition. In recent years, many feature selection methods based on manifold learning have been proposed. However, such methods are susceptible to noise data. Therefore, an efficient unsupervised feature selection method is proposed-joint low-rank representation and graph embedding for unsupervised feature selection (JLRRGE). This method not only finds the low rank structure of the data after selecting feature, which makes the algorithm more robust, but also preserves the local manifold structure of the data through the adaptive graph embedding. The experimental results show that the proposed algorithm is superior to other compared methods.

Key words: unsupervised learning, low rank representation, graph embedding, feature selection

CLC Number: 

  • TP391.4
[1] XU Y, FANG X Z, LI X L, <i>et al</i>. Data uncertainty in face recognition[J]. IEEE Transactions on Cybernetics, 2014, 44(10):1950-1961<br /> [2] YAO C, CHENG G. Approximative bayes optimality linear discriminant analysis for Chinese handwriting character recognition[J]. Neuro-computing, 2016, 207:346-353<br /> [3] FEI L K, ZHANG B, ZHANG W, <i>et al</i>. Local apparent and latent direction extraction for palm-print recognition[J]. Information Sciences, 2019, 473:59-72<br /> [4] LAN X, MA A J, YUEN P C, <i>et al</i>. Joint sparse representation and robust feature-level fusion for multicue visual tracking[J]. IEEE Transactions on Image Processing, 2015, 24(12):5826-5841<br /> [5] FANG X Z, HAN N, WU J G, <i>et al</i>. Approximate low-rank projection learning for feature extraction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11):5228-5241<br /> [6] 滕少华, 郑明, 刘冬宁. 面向音乐推荐的全变差图非负矩阵分解方法[J]. 计算机应用研究, 2018, 35(4):1010-1013 TENG S H, ZHENG M, LIU D L. Facing music recommended total variation non-negative matrix decomposition method[J]. Application Research of Computers, 2018, 35(4):1010-1013<br /> [7] 滕少华, 宋欢, 霍颖翔, 等. 一种增量式学习的语音字典构造方法[J]. 广东工业大学学报, 2018, 35(3):29-36 TENG S H, SONG H, HUO Y X, <i>et al</i>. An incremental learning approach in voice compression via sparse dictionary learning[J]. Journal of Guangdong University of Technology, 2018, 35(3):29-36<br /> [8] JA IN, DU IN, MAO J. Statistical pattern recognition:a review[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 27(11):1502-1502<br /> [9] FANG X Z, XU Y, LI X L, <i>et al</i>. Locality and similarity preserving embedding for feature selection[J]. Neurocomputing, 2014, 128:304-315<br /> [10] 滕少华, 卢东略, 霍颖翔, 等. 基于正交投影的降维分类方法研究[J]. 广东工业大学学报, 2017, 34(3):1-7 TENG S H, LU D L, HUO Y X, <i>et al</i>. Classification method based on dimension reduction[J]. Journal of Guangdong University of Technology, 2017, 34(3):1-7<br /> [11] IMOTO S, MIVANO S. A top-r feature selection algorithm for microarray gene data[J]. IEEE/ACM Transactions on Computational Bi-ology and Bioinformatics, 2012, 9(3):754-764<br /> [12] SHANG C, LI M, FENG S, <i>et al</i>. Feature selection via maximizing global information gain for text classification[J]. Knowledge-Based Systems, 2013, 54:298-309<br /> [13] NIE F P, HUANG H, CAI X, et al. Efficient and robust feature selection via joint ?2, 1-norms minimization[C]//Advances in Neural Information Processing Systems 23:24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada. Curran Associates Inc. 2010.<br /> [14] FANG X Z, XU Y, LI X, <i>et al</i>. Robust semi-supervised subspace clustering via non-negative low-rank representation[J]. IEEE Transactions on Cybernetics, 2016, 46(8):1828-1838<br /> [15] ZHU X F, LI X L, <i>et al</i>. Robust joint graph sparse coding for unsupervised spectral feature selection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 6(28):1263-1275<br /> [16] CHENG Q, ZHOU H, CHENG J. The fisher-markov selector:fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data[J]. IEEE Transactions on Software Engineering, 2011, 33(6):1217-1233<br /> [17] CAI D, ZHANG C, HE X. Unsupervised feature selection for multi-cluster data[C]//ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. USA, Washington, DC:ACM, 2010.<br /> [18] NIE F P, XU D, TSANG W H, <i>et al</i>. Flexible manifold embedding:a framework for semi-supervised and unsupervised dimension reduction[J]. IEEE Transactions on Image Processing, 2010, 19(7):1921-1932<br /> [19] HOU C P, NIE F P, LI X L, <i>et al</i>. Joint embedding learning and sparse regression:a framework for unsupervised feature selection[J]. IEEE Transactions on Cybernetics, 2013, 44(6):793-804<br /> [20] LI Z, YANG Y, LIU J, et al. Unsupervised feature selection using nonnegative spectral analysis[C]//Proceedings of 26th AAAI Conference on Artificial Intelligence. Toronto:AAAI Press, 2012:1026-1032.<br /> [21] QIAN M, ZHAI C. Robust unsupervised feature selection[C]//International Joint Conference on Artificial Intelligence. China, Beijing:ACM 2013.<br /> [22] SHI L, DU L, SHEN Y D. Robust spectral learning for unsupervised feature selection[C]//IEEE International Conference on Data Mining. China, Shenzhen:IEEE, 2015.<br /> [23] NIE F P, ZHU W, Li X L. Unsupervised feature selection with structured graph optimization[C]//Thirtieth Aaai Conference on Artificial Intelligence. USA, Phoenix:AAAI Press, 2016.<br /> [24] WEN J, HAN N, FANG X Z, <i>et al</i>. Low-rank preserving projection Via graph regularized reconstruction[J]. IEEE Transactions on Cybernetics, 2018:1-13<br /> [25] CANDES E J, RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009, 9(6):717
[1] Zhang Wei, Zhang Zhen-bin. Joint Graph Embedding and Feature Weighting for Unsupervised Feature Selection [J]. Journal of Guangdong University of Technology, 2021, 38(05): 16-23.
[2] Tan You-xin, Teng Shao-hua. Combined Weighting Method for Short Text Features [J]. Journal of Guangdong University of Technology, 2020, 37(05): 51-61.
[3] Cen Shi-jie, He Yuan-lie, Chen Xiao-cong. A Monocular Depth Estimation Combined with Attention and Unsupervised Deep Learning [J]. Journal of Guangdong University of Technology, 2020, 37(04): 35-41.
[4] Chen Ping-hua, Huang Hui, Mai Miao, Zhou Hong-hong. Multi-label Feature Selection Algorithm Based on ReliefF and Mutual Information [J]. Journal of Guangdong University of Technology, 2018, 35(05): 20-25,50.
[5] HE Ke-da, ZHU Zheng-tao, CHENG Yu. A Research on Text Classification Method Based on Improved TF-IDF Algorithm [J]. Journal of Guangdong University of Technology, 2016, 33(05): 49-53.
[6] JIANG Sheng-Yi, WANG Lian-Xi. Some Challenges in Clustering Analysis [J]. Journal of Guangdong University of Technology, 2014, 31(3): 32-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!