Journal of Guangdong University of Technology ›› 2020, Vol. 37 ›› Issue (02): 53-59.doi: 10.12052/gdutxb.190117

• Comprehensive Studies • Previous Articles     Next Articles

An Experimental Study of Gas-Cooled Thermoelectric Power Generation Stove

Huang Jin1,2, Zhou Hua1, Liu Kai-zhao1, Xiao Hui-wu1, Hu Yan-xin1   

  1. 1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510640, China;
    2. School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
  • Received:2019-09-27 Online:2020-03-10 Published:2020-01-13

Abstract: Energy and environmental issues have become social problems. A thermoelectric gas stove based on Seebeck effect is designed, which converts waste heat from the stove into electric energy. Combined with this design, the cold energy of gas is used to maintain the temperature difference between the hot and cold sides of the thermoelectric generator, and preheats the gas at the same time. Temperature curve of thermoelectric generator module, the power output characteristic and the improvement of thermal efficiency by preheating have been experimentally studied. The results show that the electric power supply is 2.9 W, and the average grill temperature rises by 31.9℃ after the gas is preheated.

Key words: thermoelectric generation, gas stove, waste heat, cold energy of gas, thermal efficiency

CLC Number: 

  • TM619
[1] 王益烜. 中国能源统计年鉴2017[M]. 北京:中国统计出版社, 2017.
[2] 石宝珩, 薛超. 科技攻关与中国天然气工业发展[J]. 石油勘探与开发, 2009, 36(3):257-263 SHI B H, XUE C. Key scientific and technological problems tackling and China's natural gas industry development[J]. Petroleum Exploration and Development, 2009, 36(3):257-263
[3] 赵东江, 马松燕. 废旧锌锰电池回收利用的研究现状[J]. 中国资源综合利用, 2006, 24(3):14-19 ZHAO D J, MA S Y. Status of recovery and utilizaion of waste used Zn-Mn battery[J]. China Resources Comprehensive Utilization, 2006, 24(3):14-19
[4] TOCCI L, PAL T, PESMAZOGLOU I, et al. Small scale organic rankine cycle (Orc):a techno-economic review[J]. Energies, 2017, 10(4):413
[5] TARTAKOVSKY L, SHEINTUCH M. Fuel reforming in internal combustion engines[J]. Progress in Energy and Combustion Science, 2018, 67:88-114
[6] 张峰. 温差发电技术的研究进展及现状[J]. 通信电源技术, 2016, 33(6):176-176, 194 ZHANG F. Research progress and current status of temperature gap power generation technology[J]. Telecom Power Technology, 2016, 33(6):176-176, 194
[7] ZHAO L D, LO S H, ZHANG Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508(7496):373-377
[8] BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416):414-418
[9] ZHAO L D, TAN G, HAO S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe[J]. Science, 2016, 351(6269):141-144
[10] ZHAO D, TAN G. A review of thermoelectric cooling:materials, modeling and applications[J]. Applied Thermal Engineering, 2014, 66(1-2):15-24
[11] ORR B, AKBARZADEH A, MOCHIZUKI M, et al. Review of car waste heat recovery systems utilizing thermoelectric generators and heat pipes[J]. Applied Thermal Engineering, 2016, 101:490-495
[12] 周武洋, 王勇. 冷热端不同散热方式对热电制冷性能的影响[J]. 中国科学院大学学报, 2019, 36(2):162-168 ZHOU W Y, WANG Y. Effects of different convective conditions at cooling and heating ends on the performance of thermoelectric refrigeration[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(2):162-168
[13] MONTECUCCO A, SIVITER J, KNOX A R. A combined heat and power system for solid-fuel stoves using thermoelectric generators[J]. Energy Procedia, 2015, 75:597-602
[14] MONTECUCCO A, SIVITER J, KNOX A R. Combined heat and power system for stoves with thermoelectric generators[J]. Applied Energy, 2017, 185:1336-1342
[15] NAJJAR Y S H, KSEIBI M M. Heat transfer and performance analysis of thermoelectric stoves[J]. Applied Thermal Engineering, 2016, 102:1045-1058
[16] CHAMPIER D, BEDECARRATS J P, RILETTOI M, et al. Thermo-electric power generation from biomass cook stoves[J]. Energy, 2010, 35(2):935-942
[17] MAL R, PRASAD R, VIJAY V K. Multi-functionality clean biomass cookstove for off-grid areas[J]. Process Safety and Environmental Protection, 2016, 104:85-94
[18] SORNEK K, FILIPOWICAZ M, RZEPKA K. The development of a thermoelectric power generator dedicated to stove-fire places with heat accumulation systems[J]. Energy Conversion and Management, 2016, 125:185-193
[19] 李国能, 朱凌云, 郑友取, 等. 一种便携式温差发电炉的实验研究[J]. 科学通报, 2017, 62(11):1191-1197 LI G N, ZHU L Y, ZHENG Y Q, et al. Experimental study on a potable thermoelectric power generating stove[J]. Chinese Science Bulletin, 2017, 62(11):1191-1197
[20] 李国能, 毕琛, 朱凌云, 等. 采用生物质燃料的温差发电热电联供系统[J]. 浙江电力, 2019, 38(01):11-17 LI G N, BI C, ZHU L Y, et al. Combined heat and power system based on bio-fueled thermoelectric generator[J]. Zhejiang Electric Power, 2019, 38(01):11-17
[21] 朱凌云, 李国能, 康泰云, 等. 基于生物质燃料的水冷式温差发电机的实验研究[J]. 发电技术, 2019, 40(2):148-154 ZHU L Y, LI G N, KANG T Y, et al. Experimental study on a water cooled thermoelectric generator based on biomass fuel[J]. Power Generation Technology, 2019, 40(2):148-154
[22] LI G N, ZHANG S, ZHENG Y Q, et al. Experimental study on a stove-powered thermoelectric generator (steg) with self starting fan cooling[J]. Renewable Energy, 2018, 121(6):502-512
[23] 谢泽扬, 黄金, 李定昌, 等. 聚光太阳电池联合温差发电系统实验研究[J]. 广东工业大学学报, 2016, 33(2):66-70 XIE Z Y, HUANG J, LI D C, et al. Experimental study of concentrator solar cells integrated with thermoelectric generators[J]. Journal of Guangdong University of Technology, 2016, 33(2):66-70
[24] 王长宏, 林涛, 林明标, 等. 太阳能温差发电系统热电性能的分析[J]. 广东工业大学学报, 2011, 28(2):47-50 WANG C H, LIN T, LIN M B, et al. Analysis of thermoelectric properties of the solar thermal power system[J]. Journal of Guangdong University of Technology, 2011, 28(2):47-50
[1] Liu Xiao-zhou, Zhu Rui, Zhu Guang-yu. Numerical Simulation and Experimental Research of Methane-hydrogen Combustion Technology on Swirl Gas Stove [J]. Journal of Guangdong University of Technology, 2023, 40(01): 113-121.
[2] Qiu Guan-fu, Luo Xiang-long, Chen Jian-yong, Yang Zhi, Chen Ying. An Off-design Optimization of Liquid Separation Condenser-based Organic Rankine Cycle Under Different Ambient Temperature [J]. Journal of Guangdong University of Technology, 2019, 36(06): 99-104,110.
[3] Kang Rui-li, Luo Xiang-long, Huang Xiao-jian, Chen Ying. A Thermal Economy Analysis of a Network Integrated Membrane Distillation and Industrial Waste Heat [J]. Journal of Guangdong University of Technology, 2018, 35(02): 11-18.
[4] Lü Qi-ming1, Wang Chang-hong2, Huang Pu-jie3. Analysis of the Application of Energy Saving Technology to Air Conditioning Systems on the Subtropical Campus [J]. Journal of Guangdong University of Technology, 2012, 29(2): 63-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!