Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (03): 22-28,47.doi: 10.12052/gdutxb.200120
Previous Articles Next Articles
Cai Hao, Liu Bo
CLC Number:
[1] TIAN M W, YAN S R, TIAN X X, et al. Research on image recognition method of bank financing bill based on binary tree decision [J]. Journal of Visual Communication and Image Representation, 2019, 60: 123-128. [2] WANG P, ZHANG P F, LI Z W. A three-way decision method based on gaussian kernel in a hybrid information system with images: an application in medical diagnosis [J]. Applied Soft Computing, 2019, 77: 734-749. [3] REN Y Z, WANG N, LI M X, et al. Deep density-based image clustering [J]. Knowledge-Based Systems, 2020, 197(7): 105841. [4] YANG Z Y, ZHANG Y, XIANG Y, et al. Non-negative matrix factorization with dual constraints for image clustering [J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2018, 50(7): 1-10. [5] 黎启祥, 肖燕珊, 郝志峰, 等. 基于抗噪声的多任务多示例学习算法研究[J]. 广东工业大学学报, 2018, 35(3): 47-53. LI Q X, XIAO Y S, HAO Z F, et al. An algorithm based on multi-instance anti-noise learning [J]. Journal of Guangdong University of Technology, 2018, 35(3): 47-53. [6] ZHANG D, WANG F, SI L, et al. Maximum margin multiple instance clustering with applications to image and text clustering [J]. IEEE Transactions on Neural Networks, 2011, 22(5): 739-751. [7] XU W, GONG Y H. Document clustering by concept factorization[C]//Proceedings of the International ACM Sigir Conference on Research and Development in Information Retrieval. Sheffield: ACM, 2004: 202-209. [8] YANG Y, WANG H. Multi-view clustering: a survey [J]. Big Data Mining & Analytics, 2018, 1(2): 3-27. [9] ZHOU W, WANG H, YANG Y. Consensus graph learning for incomplete multi-view clustering[C]// Proceedings of the 23rd Pacific-asia Conference on Knowledge Discovery and Data Mining. Macau: ACM, 2019: 529-540. [10] CAO X C, ZHANG C Q, FU H Z, et al. Diversity-induced multi-view subspace clustering[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 586-594. [11] WANG J, TIAN F, YU H C, et al. Diverse non-negative matrix factorization for multi-view data representation [J]. IEEE Transactions on Cybernetics, 2018, 48(9): 1-13. [12] LIU J, JIANG Y, LI Z C, et al. Partially shared latent factor learning with multiview data [J]. IEEE Transactions on Neural Networks, 2015, 26(6): 1233-1246. [13] CARBONNEAU M A, CHEPLYGINA V, GRANGER E, et al. Multiple instance learning: a survey of problem characteristics and applications [J]. Pattern Recognition, 2017, 77: 329-353. [14] MELKI G, CANO A, VENTURA S. Mirsvm: multi-instance support vector machine with bag representatives [J]. Pattern Recognition, 2018, 79: 228-241. [15] ANDERWS S, TSOCHANTARIDIS I, HOFMANN T. Support vector machines for multiple-instance learning[C]//Proceedings of the Neural Information Processing Systems. Vancouver: Nips, 2003: 577-584. [16] WANG H Y, YANG Q, ZHA H B. Adaptive p-posterior mixture-model kernels for multiple instance learning[C]//Proceedings of the International Conference on Machine Learning. Helsinki: ACM, 2008: 1136-1143. [17] GARTNER T, FLACH P A, KOWALCZYK A, et al. Multi-instance kernels[C]//Proceedings of the International Conference on Machine Learning. Sydney: ACM, 2002: 179-186. [18] ZHANG M L, ZHOU Z H. Multi-instance clustering with applications to multi-instance prediction [J]. Applied Intelligence, 2009, 31(1): 47-68. [19] Chua T S, Tang J H, Hong R C, et al. Nus-wide: a real-world web image database from national university of singapore[C]//Proceedings of the ACM International Conference on Image and Video Retrieval. Santorini: ACM, 2009: 368-375. [20] WEI X S, ZHOU Z H. An empirical study on image bag generators for multi-instance learning [J]. Machine Learning, 2016, 105(2): 155-198. |
[1] | Li Qi-xiang, Xiao Yan-shan, Hao Zhi-feng, Ruan Yi-bang. An Algorithm Based on Multi-task Multi-instance Anti-noise Learning [J]. Journal of Guangdong University of Technology, 2018, 35(03): 47-53. |
|