Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (03): 29-35.doi: 10.12052/gdutxb.200153
Previous Articles Next Articles
Ma Shao-peng, Liang Lu, Teng Shao-hua
CLC Number:
[1] 何友铸, 张振乾, 官春云. 高光谱遥感技术在精细农业监测上的应用及展望[J]. 作物研究, 2015, 29(1): 96-100. HE Y Z, ZHANG Z Q, GUAN C Y. Application and prospect of hyperspectral remote sensing technology in precision agriculture monitoring [J]. Crop Research, 2015, 29(1): 96-100. [2] 苗荣慧, 黄锋华, 杨华, 等. 基于空谱一体化的农田高光谱图像分类[J]. 江苏农业学报, 2018, 34(4): 818-824. MIAO R H, HUANG F H, YANG H, et al. Farmland classification of hyperspectral image based on spatial-spectral integration method [J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 818-824. [3] 邓小玲, 曾国亮, 朱梓豪, 等. 基于无人机高光谱遥感的柑橘患病植株分类与特征波段提取[J]. 华南农业大学学报, 2020, 41(6): 100-108. DENG X L, ZENG G L, ZHU Z H, et al. Classification and feature band extraction of diseased citrus plants based on UAV hyperspectral remote sensing [J]. Journal of South China Agricultural University, 2020, 41(6): 100-108. [4] 黄云, 唐林波, 李震, 等. 采用深度学习的遥感图像花生种植区域分类技术研究[J]. 信号处理, 2019, 35(4): 617-622. HUANG Y, TANG L B, LI Z, et al. Research on peanut planting area classification technology using remote sensing image based deep learning [J]. Journal of Signal Processing, 2019, 35(4): 617-622. [5] 张丰, 熊桢, 寇宁. 高光谱遥感数据用于水稻精细分类研究[J]. 武汉理工大学学报, 2002, 24(10): 36-39. ZHANG F, XIONG Z, KOU N. Airborne hyperspectral remote sensing image data is used for rice precise classification [J]. Journal of Wuhan University of technology, 2002, 24(10): 36-39. [6] HAM J, CHEN Y, CRAWFORD M M, et al. Investigation of the random forest framework for classification of hyperspectral data [J]. IEEE Transactions on Geoscience & Remote Sensing, 2005, 43(3): 492-501. [7] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790. [8] QIAN Y, YE M, ZHOU J. Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture Features [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4): 2276-2291. [9] 张晓慧, 郝润芳, 李廷鱼. 基于低秩稀疏矩阵分解和稀疏字典表达的高光谱异常目标检测[J]. 激光与光电子学进展, 2019, 56(4): 234-240. ZHANG X H, HAO R F, LI T Y. Hyperspectral abnormal target detection based on low rank and sparse matrix decomposition sparse representation [J]. Laser & Optoelectronics Progress, 2019, 56(4): 234-240. [10] SHEN L, JIA S. Three-dimensional gabor wavelets for pixel-based hyperspectral imagery classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 5039-5046. [11] CHEN Y, LIN Z, ZHAO X, et al. Deep learning-based classification of hyperspectral data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2094-2107. [12] 高鑫, 欧阳宁, 袁华. 基于快速去噪和深度信念网络的高光谱图像分类方法[J]. 桂林电子科技大学学报, 2016, 36(6): 469-476. GAO X, OU Y N, YUAN H. A hyperspectral image classification method based on fast denoising and deep belief network [J]. Journal of Guilin University of Electronic Science and Technology, 2016, 36(6): 469-476. [13] WEI H, HUANG Y, WEI L, et al. Deep convolutional neural networks for hyperspectral image classification [J]. Journal of Sensors, 2015, 2015: 1-12. [14] CHEN Y, JIANG H, LI C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232-6251. [15] YING L, ZHANG H, QIANG S. Spectral-Spatial classification of hyperspectral imagery with 3D convolutional neural network [J]. Remote Sensing, 2017, 9(1): 67-88. [16] 李竺强, 朱瑞飞, 高放, 等. 三维卷积神经网络模型联合条件随机场优化的高光谱遥感影像分类[J]. 光学学报, 2018, 38(8): 404-413. LI Z Q, ZHU R F, GAO F, et al. Hyperspectral remote sensing image classification based on three dimensional convolution neural network combined with conditional random field optimization [J]. Acta Optica Sinica, 2018, 38(8): 404-413. [17] CAO X, ZHOU F, XU L, et al. Hyperspectral image classification with markov random fields and a convolutional neural network [J]. IEEE Transactions on Image Processing, 2018, 27(5): 2354-2367. [18] LI T, LENG J, KONG L, et al. DCNR: deep cube CNN with random forest for hyper-spectral image classification [J]. Multimedia Tools and Applications, 2019, 78(3): 3411-3433. [19] HERVÉ A, WILLIAMS L J. Principal component analysis [J]. Wiley Interdisciplinary Reviews Computational Statistics, 2010, 2(4): 433-459. [20] YU S, JIA S, XU C. Convolutional neural networks for hyperspectral image classification [J]. Neurocomputing, 2017, 219(Jan. 5): 88-98. [21] SÁIZ-ABAJO M J, MEVIK B H, SEGTNAN V H, et al. Ensemble methods and data augmentation by noise addition applied to the analysis of spectroscopic data [J]. Analytica Chimica Acta, 2005, 533(2): 147-159. [22] 张慧, 王坤峰, 王飞跃. 深度学习在目标视觉检测中的应用进展与展望[J]. 自动化学报, 2017, 43(8): 1289-1305. ZHANG H, WANG K F, WANG F Y. Advances and perspectives on applications of deep learning in visual object detection [J]. Acta Automatica Sinica, 2017, 43(8): 1289-1305. [23] 姜枫, 顾庆, 郝慧珍, 等. 基于内容的图像分割方法综述[J]. 软件学报, 2017, 28(1): 160-183. JIANG F, GU Q, HAO H Z, et al. Survey on content-based image segmentation methods [J]. Journal of Software, 2017, 28(1): 160-183. [24] 申小敏, 李保俊, 孙旭, 等. 基于卷积神经网络的大规模人脸聚类[J]. 广东工业大学学报, 2016, 33(6): 77-84. SHEN X M, LI B J, SUN X, et al. Large scale face clustering based on convolutional neural network [J]. Journal of Guangdong University of Technology, 2016, 33(6): 77-84. [25] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille, France: ICML, 2015, 448-456. [26] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting [J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958. [27] CAO X, XU L, MENG D, et al. Integration of 3-dimensional discrete wavelet transform and markov random field for hyperspectral image classification [J]. Neurocomputing, 2017, 226(Feb. 22): 90-100. [28] HAUT J M, PAOLETTI M E, PLAZA J, et al. Active learning with convolutional neural networks for hyperspectral image classification using a new bayesian approach [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6440-6461. [29] ZHANG H, LI Y, ZHANG Y, et al. Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network [J]. Remote Sensing Letters, 2017, 8(5): 438-447. [30] ZHAO W, LI S, LI A, et al. Hyperspectral images classification with convolutional neural network and textural feature using limited training samples [J]. Remote Sensing Letters, 2019, 10(5): 449-458. |
[1] | Xie Guo-bo, Lin Li, Lin Zhi-yi, He Di-xuan, Wen Gang. An Insulator Burst Defect Detection Method Based on YOLOv4-MP [J]. Journal of Guangdong University of Technology, 2023, 40(02): 15-21. |
[2] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8. |
[3] | Huang Jian-hang, Wang Zhen-you. A Research on Deep Learning Object Detection Algorithm Based on Feature Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(04): 52-58. |
[4] | Xia Hao, Cai Nian, Wang Ping, Wang Han. Magnetic Resonance Image Super-Resolution via Multi-Resolution Learning [J]. Journal of Guangdong University of Technology, 2020, 37(06): 26-31. |
[5] | Zhan Yin-wei, Zhu Bai-wan, Yang Zhuo. Research and Application of Vehicle Color and Model Recognition Algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(04): 9-14. |
[6] | Zeng Bi-qing, Han Xu-li, Wang Sheng-yu, Xu Ru-yang, Zhou Wu. Sentiment Classification Based on Double Attention Convolutional Neural Network Model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 10-17. |
[7] | Zhao Jing, Li Jia-lin, Xiong Rui, Zheng Da, Zhang Pan-wang. A Structure Safety Analysis and Lightweight Design for Coach Chassis [J]. Journal of Guangdong University of Technology, 2018, 35(06): 31-36. |
[8] | Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin. Loop Closure Detection for Visual SLAM Using Convolutional Neural Networks [J]. Journal of Guangdong University of Technology, 2018, 35(05): 31-37. |
[9] | Chen Xu, Zhang Jun, Chen Wen-wei, Li Shuo-hao. Convolutional Neural Network Algorithm and Case [J]. Journal of Guangdong University of Technology, 2017, 34(06): 20-26. |
[10] | SHEN Xiao-Min, LI Bao-Jun, SUN Xu, XU Wei-Chao. Large Scale Face Clustering Based on Convolutional Neural Network [J]. Journal of Guangdong University of Technology, 2016, 33(06): 77-84. |
|