Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (03): 29-35.doi: 10.12052/gdutxb.200153

Previous Articles     Next Articles

A Lightweight Hyperspectral Remote Sensing Image Classification Method

Ma Shao-peng, Liang Lu, Teng Shao-hua   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-11-23 Online:2021-05-10 Published:2021-03-12

Abstract: Intelligent agriculture has become a major trend in the development of modern agriculture. Low-altitude UAV remote sensing image analysis is the key point in precision agriculture, which guides UAV to carry out precise job by studying on hyperspectral remote sensing images taken by UAV. However, small and medium-sized farms have the disadvantage of insufficient computational resource. To deal with the problems, a classification method based on lightweight Convolutional Neural Networks (CNN) is proposed. This method aims to reduce the training cost and maintain an acceptable classification accuracy, so as to help farms avoid replacing expensive high-performance equipment. PCA is used to reduce the image spectral dimension and some data augmentation methods are used to enlarge the dataset. The CNN structure is optimized to accelerate the training process and the model used to extract Spectral-Spatial feature to improve classification accuracy. Experiments are conducted on three benchmark datasets, which shows that our lightweight CNN model can guarantee a satisfying accuracy while having a lower training cost compared with both traditional methods and deep learning method.

Key words: intelligent agriculture, lightweight, hyperspectral remote sensing, convolutional neural network

CLC Number: 

  • TP751
[1] 何友铸, 张振乾, 官春云. 高光谱遥感技术在精细农业监测上的应用及展望[J]. 作物研究, 2015, 29(1): 96-100.
HE Y Z, ZHANG Z Q, GUAN C Y. Application and prospect of hyperspectral remote sensing technology in precision agriculture monitoring [J]. Crop Research, 2015, 29(1): 96-100.
[2] 苗荣慧, 黄锋华, 杨华, 等. 基于空谱一体化的农田高光谱图像分类[J]. 江苏农业学报, 2018, 34(4): 818-824.
MIAO R H, HUANG F H, YANG H, et al. Farmland classification of hyperspectral image based on spatial-spectral integration method [J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 818-824.
[3] 邓小玲, 曾国亮, 朱梓豪, 等. 基于无人机高光谱遥感的柑橘患病植株分类与特征波段提取[J]. 华南农业大学学报, 2020, 41(6): 100-108.
DENG X L, ZENG G L, ZHU Z H, et al. Classification and feature band extraction of diseased citrus plants based on UAV hyperspectral remote sensing [J]. Journal of South China Agricultural University, 2020, 41(6): 100-108.
[4] 黄云, 唐林波, 李震, 等. 采用深度学习的遥感图像花生种植区域分类技术研究[J]. 信号处理, 2019, 35(4): 617-622.
HUANG Y, TANG L B, LI Z, et al. Research on peanut planting area classification technology using remote sensing image based deep learning [J]. Journal of Signal Processing, 2019, 35(4): 617-622.
[5] 张丰, 熊桢, 寇宁. 高光谱遥感数据用于水稻精细分类研究[J]. 武汉理工大学学报, 2002, 24(10): 36-39.
ZHANG F, XIONG Z, KOU N. Airborne hyperspectral remote sensing image data is used for rice precise classification [J]. Journal of Wuhan University of technology, 2002, 24(10): 36-39.
[6] HAM J, CHEN Y, CRAWFORD M M, et al. Investigation of the random forest framework for classification of hyperspectral data [J]. IEEE Transactions on Geoscience & Remote Sensing, 2005, 43(3): 492-501.
[7] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790.
[8] QIAN Y, YE M, ZHOU J. Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture Features [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4): 2276-2291.
[9] 张晓慧, 郝润芳, 李廷鱼. 基于低秩稀疏矩阵分解和稀疏字典表达的高光谱异常目标检测[J]. 激光与光电子学进展, 2019, 56(4): 234-240.
ZHANG X H, HAO R F, LI T Y. Hyperspectral abnormal target detection based on low rank and sparse matrix decomposition sparse representation [J]. Laser & Optoelectronics Progress, 2019, 56(4): 234-240.
[10] SHEN L, JIA S. Three-dimensional gabor wavelets for pixel-based hyperspectral imagery classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 5039-5046.
[11] CHEN Y, LIN Z, ZHAO X, et al. Deep learning-based classification of hyperspectral data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2094-2107.
[12] 高鑫, 欧阳宁, 袁华. 基于快速去噪和深度信念网络的高光谱图像分类方法[J]. 桂林电子科技大学学报, 2016, 36(6): 469-476.
GAO X, OU Y N, YUAN H. A hyperspectral image classification method based on fast denoising and deep belief network [J]. Journal of Guilin University of Electronic Science and Technology, 2016, 36(6): 469-476.
[13] WEI H, HUANG Y, WEI L, et al. Deep convolutional neural networks for hyperspectral image classification [J]. Journal of Sensors, 2015, 2015: 1-12.
[14] CHEN Y, JIANG H, LI C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232-6251.
[15] YING L, ZHANG H, QIANG S. Spectral-Spatial classification of hyperspectral imagery with 3D convolutional neural network [J]. Remote Sensing, 2017, 9(1): 67-88.
[16] 李竺强, 朱瑞飞, 高放, 等. 三维卷积神经网络模型联合条件随机场优化的高光谱遥感影像分类[J]. 光学学报, 2018, 38(8): 404-413.
LI Z Q, ZHU R F, GAO F, et al. Hyperspectral remote sensing image classification based on three dimensional convolution neural network combined with conditional random field optimization [J]. Acta Optica Sinica, 2018, 38(8): 404-413.
[17] CAO X, ZHOU F, XU L, et al. Hyperspectral image classification with markov random fields and a convolutional neural network [J]. IEEE Transactions on Image Processing, 2018, 27(5): 2354-2367.
[18] LI T, LENG J, KONG L, et al. DCNR: deep cube CNN with random forest for hyper-spectral image classification [J]. Multimedia Tools and Applications, 2019, 78(3): 3411-3433.
[19] HERVÉ A, WILLIAMS L J. Principal component analysis [J]. Wiley Interdisciplinary Reviews Computational Statistics, 2010, 2(4): 433-459.
[20] YU S, JIA S, XU C. Convolutional neural networks for hyperspectral image classification [J]. Neurocomputing, 2017, 219(Jan. 5): 88-98.
[21] SÁIZ-ABAJO M J, MEVIK B H, SEGTNAN V H, et al. Ensemble methods and data augmentation by noise addition applied to the analysis of spectroscopic data [J]. Analytica Chimica Acta, 2005, 533(2): 147-159.
[22] 张慧, 王坤峰, 王飞跃. 深度学习在目标视觉检测中的应用进展与展望[J]. 自动化学报, 2017, 43(8): 1289-1305.
ZHANG H, WANG K F, WANG F Y. Advances and perspectives on applications of deep learning in visual object detection [J]. Acta Automatica Sinica, 2017, 43(8): 1289-1305.
[23] 姜枫, 顾庆, 郝慧珍, 等. 基于内容的图像分割方法综述[J]. 软件学报, 2017, 28(1): 160-183.
JIANG F, GU Q, HAO H Z, et al. Survey on content-based image segmentation methods [J]. Journal of Software, 2017, 28(1): 160-183.
[24] 申小敏, 李保俊, 孙旭, 等. 基于卷积神经网络的大规模人脸聚类[J]. 广东工业大学学报, 2016, 33(6): 77-84.
SHEN X M, LI B J, SUN X, et al. Large scale face clustering based on convolutional neural network [J]. Journal of Guangdong University of Technology, 2016, 33(6): 77-84.
[25] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille, France: ICML, 2015, 448-456.
[26] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting [J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[27] CAO X, XU L, MENG D, et al. Integration of 3-dimensional discrete wavelet transform and markov random field for hyperspectral image classification [J]. Neurocomputing, 2017, 226(Feb. 22): 90-100.
[28] HAUT J M, PAOLETTI M E, PLAZA J, et al. Active learning with convolutional neural networks for hyperspectral image classification using a new bayesian approach [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6440-6461.
[29] ZHANG H, LI Y, ZHANG Y, et al. Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network [J]. Remote Sensing Letters, 2017, 8(5): 438-447.
[30] ZHAO W, LI S, LI A, et al. Hyperspectral images classification with convolutional neural network and textural feature using limited training samples [J]. Remote Sensing Letters, 2019, 10(5): 449-458.
[1] Xie Guo-bo, Lin Li, Lin Zhi-yi, He Di-xuan, Wen Gang. An Insulator Burst Defect Detection Method Based on YOLOv4-MP [J]. Journal of Guangdong University of Technology, 2023, 40(02): 15-21.
[2] Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8.
[3] Huang Jian-hang, Wang Zhen-you. A Research on Deep Learning Object Detection Algorithm Based on Feature Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(04): 52-58.
[4] Xia Hao, Cai Nian, Wang Ping, Wang Han. Magnetic Resonance Image Super-Resolution via Multi-Resolution Learning [J]. Journal of Guangdong University of Technology, 2020, 37(06): 26-31.
[5] Zhan Yin-wei, Zhu Bai-wan, Yang Zhuo. Research and Application of Vehicle Color and Model Recognition Algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(04): 9-14.
[6] Zeng Bi-qing, Han Xu-li, Wang Sheng-yu, Xu Ru-yang, Zhou Wu. Sentiment Classification Based on Double Attention Convolutional Neural Network Model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 10-17.
[7] Zhao Jing, Li Jia-lin, Xiong Rui, Zheng Da, Zhang Pan-wang. A Structure Safety Analysis and Lightweight Design for Coach Chassis [J]. Journal of Guangdong University of Technology, 2018, 35(06): 31-36.
[8] Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin. Loop Closure Detection for Visual SLAM Using Convolutional Neural Networks [J]. Journal of Guangdong University of Technology, 2018, 35(05): 31-37.
[9] Chen Xu, Zhang Jun, Chen Wen-wei, Li Shuo-hao. Convolutional Neural Network Algorithm and Case [J]. Journal of Guangdong University of Technology, 2017, 34(06): 20-26.
[10] SHEN Xiao-Min, LI Bao-Jun, SUN Xu, XU Wei-Chao. Large Scale Face Clustering Based on Convolutional Neural Network [J]. Journal of Guangdong University of Technology, 2016, 33(06): 77-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!