Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (04): 32-35,45.doi: 10.12052/gdutxb.210002
Previous Articles Next Articles
Jia Ling-ling, Liu Yu-lan
CLC Number:
[1] BIENTOCK D. Computational study of a family of mixed-integer quadratic programming problems [J]. Mathematical Programming, 1996, 74(2): 121-140. [2] CANDES, E J, WAKIN M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. [3] GAO J, LI D. Optimal cardinality constrained portfolio selection [J]. Operations Research, 2013, 61(3): 745-761. [4] GAO J, LI D. A polynomial case of the cardinality-constrained quadratic optimization problem [J]. Journal of Global Optimization, 2013, 56(4): 1441-1455. [5] LI D, SUN X, WANG J. Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection [J]. Mathematical Finance, 2006, 16(1): 83-101. [6] MILLER R, MILLER J A, MILLER J F A P. Subset selection in regression[M]. Boca Raton, FL: CRC Press, 2002. [7] LORENZO D D, LIUZZI G, RINALDI F, et al. A concave optimization-based approach for sparse portfolio selection [J]. Optimization Methods & Software, 2012, 27(6): 983-1000. [8] MURRAY W, SHEK H. A local relaxation method for the cardinality constrained portfolio optimization problem [J]. Computational Optimization and Applications, 2012, 53: 681-709. [9] SUN X, ZHENG X, LI D. Recent advances in mathematical programming with semicontinuous variables and cardinality constraint [J]. Journal of the Operational Research Society, 2013, 77(1): 55-77. [10] FENG M, MITCHELL J E, PANG J S, et al. Complementary formulations of l0 norm optimization problems [J]. Industrial Engineering and Management Sciences, 2013, 1: 11-21. [11] BURDAKOV O P, KANZOW C, SCHWARTE A. Mathematical programs with cardinality constraints: reformulation by complementarity-type conditions and a regularization method [J]. SIAM Journal on Optimization, 2015, 26(1): 397-425. [12] BI S, PAN S. Multistage convex relaxation approach to rank regularized minimization problems based on equivalent mathematical program with a generalized complementarity constraint [J]. SIAM Journal on Control and Optimization, 2017, 55(4): 2493-2518. [13] LIU Y, BI S, PAN S. Equivalent lipschitz surrogates for zero-norm and rank optimization problems [J]. Journal of Global Optimization, 2018, 72(4): 679-704. [14] LIU Y, BI S, PAN S. Several classes of stationary points for rank regularized minimization problems [J]. SIAM Journal on Optimization, 2020, 30(2): 1756-1775. [15] PAN L, XIU N, ZHOU S. On solutions of sparsity constrained optimization [J]. Journal of the Operations Research Society of China, 2015, 3(4): 421-439. [16] ROCKAFELLAR R T, WET R J. Variational Analysis[M]. New York: Springer, 1998. |
No related articles found! |
|