Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (04): 113-120.doi: 10.12052/gdutxb.210058
Previous Articles Next Articles
Cao Yi-ting1, Wang Qiao1,2, Xu Ze-tao1, Lyu Guan-heng1
CLC Number:
[1] WU T, LIU X, LIU Y, et al. Application of QD-MOF composites for photocatalysis: energy production and environmental remediation [J]. Coordination Chemistry Reviews, 2020, 403: 213097. [2] OLA O, MAROTO-VALER M M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2015, 24: 16-42. [3] TRELLU C, MOUSSET E, PECHAUD Y, et al. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review [J]. Journal of Hazardous Materials, 2016, 306: 149-174. [4] REDDY P A K, REDDY P V L, KWON E, et al. Recent advances in photocatalytic treatment of pollutants in aqueous media [J]. Environment International, 2016, 91: 94-103. [5] MAEDA K, TERAMURA K, LU D L, et al. Photocatalyst releasing hydrogen from water- enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight [J]. Nature, 2006, 440(7082): 295-295. [6] LIANG Q, LIU X, ZENG G, et al. Surfactant-assisted synthesis of photocatalysts: mechanism, synthesis, recent advances and environmental application [J]. Chemical Engineering Journal, 2019, 372: 429-451. [7] LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature, 1999, 402(6759): 276-279. [8] YAGHI O M, O'KEEFFE M, OCKWIG N W, et al. Reticular synthesis and the design of new materials [J]. Nature, 2003, 423(6941): 705-714. [9] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks [J]. Science, 2013, 341(6149): 1230444. [10] 黄刚, 陈玉贞, 江海龙. 金属有机骨架材料在催化中的应用[J]. 化学学报, 2016, 74(02): 113-129. HUANG G, CHEN Y Z, JIANG H L. Metal-organic frameworks for catalysis [J]. Acta Chimica Sinica, 2016, 74(02): 113-129. [11] WENG H, YAN B. Flexible Tb(III) functionalized cadmium metal organic framework as fluorescent probe for highly selectively sensing ions and organic small molecules [J]. Sensors and Actuators B-Chemical, 2016, 228: 702-708. [12] ZHU J, XIA T, CUI Y, et al. A turn-on MOF-based luminescent sensor for highly selective detection of glutathione [J]. Journal of Solid State Chemistry, 2019, 270: 317-323. [13] AL-NADDAF Q, ROWNAGHI A A, REZAEI F. Multicomponent adsorptive separation of CO2, CO, CH4, N2, and H2 over core-shell zeolite-5A@MOF-74 composite adsorbents [J]. Chemical Engineering Journal, 2020, 384: 123251. [14] SUN H, YU X, MA X, et al. MnOx-CeO2 catalyst derived from metal-organic frameworks for toluene oxidation [J]. Catalysis Today, 2020, 355: 580-586. [15] LI X, ZHU Q L. MOF-based materials for photo- and electrocatalytic CO2 reduction [J]. EnergyChem, 2020, 2(3): 100033. [16] ZHAO C, PAN X, WANG Z, et al. 1 + 1 > 2: a critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis [J]. Chemical Engineering Journal, 2021, 417: 128022. [17] HE R, XU D, CHENG B, et al. Review on nanoscale Bi-based photocatalysts [J]. Nanoscale Horizons, 2018, 3(5): 464-504. [18] 陈丹丹, 衣晓虹, 王崇臣. 机械化学法制备金属-有机骨架及其复合物研究进展[J]. 无机化学学报, 2020, 36(10): 1805-1821. CHEN D D, YI X H, WANG C C. Preparation of metal-organic frameworks and their composites using mechanochemical methods [J]. Chinese Journal of Inorganic Chemistry, 2020, 36(10): 1805-1821. [19] BIBI R, SHEN Q, WEI L, et al. Hybrid BiOBr/UiO-66-NH2 composite with enhanced visible-light driven photocatalytic activity toward RhB dye degradation [J]. RSC Advances, 2018, 8(4): 2048-2058. [20] HU Q, CHEN Y, LI M, et al. Construction of NH2-UiO-66/BiOBr composites with boosted photocatalytic activity for the removal of contaminants [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 579: 123625. [21] KHASEVANI S G, GHOLAMI M R. Engineering a highly dispersed core@shell structure for efficient photocatalysis: a case study of ternary novel BiOI@MIL-88A(Fe)@g-C3N4 nanocomposite [J]. Materials Research Bulletin, 2018, 106: 93-102. [22] ASKARI N, BEHESHTI M, MOWLA D, et al. Fabrication of CuWO4/Bi2S3/ZIF67 MOF: a novel double Z-scheme ternary heterostructure for boosting visible-light photodegradation of antibiotics [J]. Chemosphere, 2020, 251: 126453. [23] LI H, ZHAO C, LI X, et al. Boosted photocatalytic Cr(VI) reduction over Z-scheme MIL-53(Fe)/Bi12O17Cl2 composites under white light [J]. Journal of Alloys and Compounds, 2020, 844: 156147. [24] ZHAO C, WANG J, CHEN X, et al. Bifunctional Bi12O17Cl2/MIL-100(Fe) composites toward photocatalytic Cr(VI) sequestration and activation of persulfate for bisphenol A degradation [J]. Science of the Total Environment, 2021, 752: 141901. [25] YANG Z, DING J, FENG J, et al. Preparation of BiVO4/MIL‐125 (Ti) composite with enhanced visible‐light photocatalytic activity for dye degradation [J]. Applied Organometallic Chemistry, 2018, 32(4): e4285. [26] 何云鹏, 金雪阳, 李文卓, 等. Bi2WO6/UiO-66复合材料的制备及其光催化性能[J]. 无机化学学报, 2019, 35(6): 996-1004. HE Y P, JIN X Y, LI W Z, et al. Synthesis and photocatalytic properties of Bi2WO6/UiO-66 composite [J]. Chinese Journal of Inorganic Chemistry, 2019, 35(6): 996-1004. [27] 李梦佳, 妥小军, 李小妹, 等. BiVO4/MIL-100(Fe)复合材料光催化降解结晶紫[J]. 精细化工, 2020, 37(1): 33-38. LI J M, TUO X J, LI X M, et al. Photocatalytic degradation of crystal violet using BiVO4/MIL-100(Fe) composites [J]. Fine Chemicals, 2020, 37(1): 33-38. [28] KHASEVANI S G, GHOLAMI M R. Evaluation of the reaction mechanism for photocatalytic degradation of organic pollutants with MIL-88A/BiOI structure under isible light irradiation [J]. Research on Chemical Intermediates, 2019, 45(3): 1341-1356. [29] ASKARI N, BEHESHTI M, MOWLA D, et al. Fabrication of CuWO4/Bi2S3/ZIF-67 MOF: a novel double Z-scheme ternary heterostructure for boosting visible-light photodegradation of antibiotics [J]. Chemosphere, 2020, 251: 126453. [30] TANG L, LV Z Q, XUE Y C, et al. MIL-53 (Fe) incorporated in the lamellar BiOBr: Promoting the visible-light catalytic capability on the degradation of rhodamine B and carbamazepine [J]. Chemical Engineering Journal, 2019, 374: 975-982. [31] HU Q, DI J, WANG B, et al. In-situ preparation of NH2-MIL-125(Ti)/BiOCl composite with accelerating charge carriers for boosting visible light photocatalytic activity [J]. Applied Surface Science, 2019, 466: 525-534. [32] LIANG Q, CUI S, JIN J, et al. Fabrication of BiOI@UIO-66(NH2)@g-C3N4 ternary Z-scheme heterojunction with enhanced visible-light photocatalytic activity [J]. Applied Surface Science, 2018, 456: 899-907. [33] 綦毓文, 魏砾宏, 石冬妮, 等. UiO-66/BiVO4复合光催化剂的制备及其对四环素的光解[J]. 中国环境科学, 2021, 41(3): 1162-1171. QI Y W, WEI L H, SHI D N, et al. Preparation of UiO-66/BiVO4 composite photocatalyst and its photodegradation of tetracycline [J]. China Environmental Science, 2021, 41(3): 1162-1171. [34] ZHAO C, WANG Z, LI X, et al. Facile fabrication of BUC-21/Bi24O31Br10 composites for enhanced photocatalytic Cr(VI) reduction under white light [J]. Chemical Engineering Journal, 2020, 389: 123431. [35] ZHANG S, DU M, KUANG J, et al. Surface-defect-rich mesoporous NH2-MIL-125 (Ti)@Bi2MoO6 core-shell heterojunction with improved charge separation and enhanced visible-light-driven photocatalytic performance [J]. Journal of Colloid and Interface Science, 2019, 554: 324-334. [36] HAN Q, DONG Y, XU C, et al. Immobilization of Metal-Organic Framework MIL-100(Fe) on the Surface of BiVO4: a new platform for enhanced visible-light-driven water oxidation [J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10410-10419. [37] LIU J X, LI R, ZU X, et al. Photocatalytic conversion of nitrogen to ammonia with water on triphase interfaces of hydrophilic-hydrophobic composite Bi4O5Br2/ZIF-8 [J]. Chemical Engineering Journal, 2019, 371: 796-803. [38] LOPEZ Y C, VILTRES H, GUPTA N K, et al. Transition metal-based metal-organic frameworks for environmental applications: a review [J]. Environmental Chemistry Letters, 2021: 1-40. [39] TARKWA J B, OTURAN N, ACAYANKA E, et al. Photo-Fenton oxidation of Orange G azo dye: process optimization and mineralization mechanism [J]. Environmental Chemistry Letters, 2019, 17(1): 473-479. [40] 董振, 刘亮, 郝艳, 等. 偶氮染料废水处理技术的研究进展[J]. 水处理技术, 2017, 43(4): 6-10. DONG Z, LIU L, HAO Y, et al. Research progress on the treatment of azo dye containing wastewater [J]. Technology of Water Treatment, 2017, 43(4): 6-10. [41] YANG H M, LIU X, SONG X L, et al. In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(12): 3987-3994. [42] MUGUNTHAN E, SAIDUTTA M B, JAGADEESHBABU P E. Visible light assisted photocatalytic degradation of diclofenac using TiO2-WO3 mixed oxide catalysts [J]. Environmental Nanotechnology, Monitoring & Management, 2018, 10: 322-330. [43] LI G, NIE X, CHEN J, et al. Enhanced simultaneous PEC eradication of bacteria and antibiotics by facilely fabricated high-activity facets TiO2 mounted onto TiO2 nanotubular photoanode [J]. Water Research, 2016, 101: 597-605. [44] KARKMAN A, PARNANEN K, LARSSON D G J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments [J]. Nature Communications, 2019, 10(1): 80. [45] BANASCHIK R, LUKES P, JABLONOWSKI H, et al. Potential of pulsed corona discharges generated in water for the degradation of persistent pharmaceutical residues [J]. Water Research, 2015, 84: 127-35. [46] 王雪平, 朱惠斌. 制药工业废水中14种沙星类抗生素的液相色谱分析法[J]. 工业水处理, 2019, 39(7): 89-93. WANG X P, ZHU H B. Liquid chromatographic analysis of 14 kinds of afloxacin antibiotics in pharmaceutical industrial wastewater [J]. Industrial Water Treatment, 2019, 39(7): 89-93. [47] WANG C C, DU X D, LI J, et al. Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review [J]. Applied Catalysis B:Environmental, 2016, 193: 198-216. [48] 王雪瑾, 朱霞萍, 蓝路梅. 镁铝层状超分子化合物去除废水中的六价铬[J]. 应用化学, 2017, 34(1): 98-104. WANG X J, ZHU X P, LAN L M. Efficient removal of Cr(Vl) in wastewater by Mg/Al layered superamolecular compounds [J]. Chinese Journal of Applied Chemistry, 2017, 34(1): 98-104. [49] HAO X, JIN Z, YANG H, et al. Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution [J]. Applied Catalysis B:Environmental, 2017, 210: 45-56. [50] BLAKEMORE J D, CRABTREE R H, BRUDVIG G W. Molecular catalysts for water oxidation [J]. Chemical Reviews, 2015, 115(23): 12974-3005. [51] 李跃军, 曹铁平, 赵艳辉, 等. Bi@Bi2Sn2O7/TiO2等离子体复合纤维的制备及增强的光催化产氢活性[J]. 无机化学学报, 2019, 35(8): 1371-1378. JI Y J, CAO T P, ZHAO Y H, et al. Preparation of Bi@Bi2Sn2O7/TiO2 plasmonic composite fibers with enhanced photocatalytic hydrogen generation activity [J]. Chinese Journal of Inorganic Chemistry, 2019, 35(8): 1371-1378. [52] OSHIKIRI T, UENO K, MISAWA H. Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation [J]. Angewandte Chemie, 2014, 126(37): 9960-9963. [53] WANG L, XIA M, WANG H, et al. Greening ammonia toward the solar ammonia refinery [J]. Joule, 2018, 2(6): 1055-1074. [54] HIRAKAWA H, HASHIMOTO M, SHIRAISHI Y, et al. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide [J]. Journal of the American Chemical Society, 2017, 139(31): 10929-10936. [55] VAN DER HAM C J M, KOPER M T M, HETTERSCHEID D G H. Challenges in reduction of dinitrogen by proton and electron transfer [J]. Chemical Society Reviews, 2014, 43(15): 5183-5191. |
[1] | Hu Lu-guo, Hu Zheng-fa, Xiao Yang, Wang Yin-hai, Zhao Hui. A Study of the Modification of Nano-CuO Photocatalyst by Ethanol Quenching [J]. Journal of Guangdong University of Technology, 2020, 37(04): 84-90. |
[2] | FU Li-Peng, ZHANG Guo-Qing, YANG Cheng-Zhao. Degradation of Reactive Black Dye GR in Engineering Photocatalytic Reactors Coated with TiC2 [J]. Journal of Guangdong University of Technology, 2010, 27(1): 28-32. |
|