Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (04): 113-120.doi: 10.12052/gdutxb.210058

Previous Articles     Next Articles

Research Progress of MOF/Bismuth-based Semiconductor Composites in Photocatalytic Technology

Cao Yi-ting1, Wang Qiao1,2, Xu Ze-tao1, Lyu Guan-heng1   

  1. 1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
  • Received:2021-04-12 Online:2022-07-10 Published:2022-06-29

Abstract: Photocatalysis has been regarded as an efficient technology in environmental remediation and energy conversion, and its core is the design and development of efficient photocatalysts. The composites of the bismuth-based semiconductors combined with metal-organic frameworks (MOFs) have attracted much attention due to their high photocatalytic activity. A review is conducted on recent advances in MOF/bismuth-based semiconductor composites (abbreviated as MBCs). On this basis, the synthesis methods of MBCs are described in detail, and then the applications of MBCs in organic pollutant degradation, Cr(VI) reduction, water (H2O) splitting, nitrogen (N2) fixation discussed. Finally, the unsolved problems of MBCs are discussed and the future development prospects proposed.

Key words: metal-organic frameworks, bismuth-based semiconductor, photocatalysis, environmental remediation, energy conversion

CLC Number: 

  • O643.3
[1] WU T, LIU X, LIU Y, et al. Application of QD-MOF composites for photocatalysis: energy production and environmental remediation [J]. Coordination Chemistry Reviews, 2020, 403: 213097.
[2] OLA O, MAROTO-VALER M M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2015, 24: 16-42.
[3] TRELLU C, MOUSSET E, PECHAUD Y, et al. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review [J]. Journal of Hazardous Materials, 2016, 306: 149-174.
[4] REDDY P A K, REDDY P V L, KWON E, et al. Recent advances in photocatalytic treatment of pollutants in aqueous media [J]. Environment International, 2016, 91: 94-103.
[5] MAEDA K, TERAMURA K, LU D L, et al. Photocatalyst releasing hydrogen from water- enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight [J]. Nature, 2006, 440(7082): 295-295.
[6] LIANG Q, LIU X, ZENG G, et al. Surfactant-assisted synthesis of photocatalysts: mechanism, synthesis, recent advances and environmental application [J]. Chemical Engineering Journal, 2019, 372: 429-451.
[7] LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature, 1999, 402(6759): 276-279.
[8] YAGHI O M, O'KEEFFE M, OCKWIG N W, et al. Reticular synthesis and the design of new materials [J]. Nature, 2003, 423(6941): 705-714.
[9] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks [J]. Science, 2013, 341(6149): 1230444.
[10] 黄刚, 陈玉贞, 江海龙. 金属有机骨架材料在催化中的应用[J]. 化学学报, 2016, 74(02): 113-129.
HUANG G, CHEN Y Z, JIANG H L. Metal-organic frameworks for catalysis [J]. Acta Chimica Sinica, 2016, 74(02): 113-129.
[11] WENG H, YAN B. Flexible Tb(III) functionalized cadmium metal organic framework as fluorescent probe for highly selectively sensing ions and organic small molecules [J]. Sensors and Actuators B-Chemical, 2016, 228: 702-708.
[12] ZHU J, XIA T, CUI Y, et al. A turn-on MOF-based luminescent sensor for highly selective detection of glutathione [J]. Journal of Solid State Chemistry, 2019, 270: 317-323.
[13] AL-NADDAF Q, ROWNAGHI A A, REZAEI F. Multicomponent adsorptive separation of CO2, CO, CH4, N2, and H2 over core-shell zeolite-5A@MOF-74 composite adsorbents [J]. Chemical Engineering Journal, 2020, 384: 123251.
[14] SUN H, YU X, MA X, et al. MnOx-CeO2 catalyst derived from metal-organic frameworks for toluene oxidation [J]. Catalysis Today, 2020, 355: 580-586.
[15] LI X, ZHU Q L. MOF-based materials for photo- and electrocatalytic CO2 reduction [J]. EnergyChem, 2020, 2(3): 100033.
[16] ZHAO C, PAN X, WANG Z, et al. 1 + 1 > 2: a critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis [J]. Chemical Engineering Journal, 2021, 417: 128022.
[17] HE R, XU D, CHENG B, et al. Review on nanoscale Bi-based photocatalysts [J]. Nanoscale Horizons, 2018, 3(5): 464-504.
[18] 陈丹丹, 衣晓虹, 王崇臣. 机械化学法制备金属-有机骨架及其复合物研究进展[J]. 无机化学学报, 2020, 36(10): 1805-1821.
CHEN D D, YI X H, WANG C C. Preparation of metal-organic frameworks and their composites using mechanochemical methods [J]. Chinese Journal of Inorganic Chemistry, 2020, 36(10): 1805-1821.
[19] BIBI R, SHEN Q, WEI L, et al. Hybrid BiOBr/UiO-66-NH2 composite with enhanced visible-light driven photocatalytic activity toward RhB dye degradation [J]. RSC Advances, 2018, 8(4): 2048-2058.
[20] HU Q, CHEN Y, LI M, et al. Construction of NH2-UiO-66/BiOBr composites with boosted photocatalytic activity for the removal of contaminants [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 579: 123625.
[21] KHASEVANI S G, GHOLAMI M R. Engineering a highly dispersed core@shell structure for efficient photocatalysis: a case study of ternary novel BiOI@MIL-88A(Fe)@g-C3N4 nanocomposite [J]. Materials Research Bulletin, 2018, 106: 93-102.
[22] ASKARI N, BEHESHTI M, MOWLA D, et al. Fabrication of CuWO4/Bi2S3/ZIF67 MOF: a novel double Z-scheme ternary heterostructure for boosting visible-light photodegradation of antibiotics [J]. Chemosphere, 2020, 251: 126453.
[23] LI H, ZHAO C, LI X, et al. Boosted photocatalytic Cr(VI) reduction over Z-scheme MIL-53(Fe)/Bi12O17Cl2 composites under white light [J]. Journal of Alloys and Compounds, 2020, 844: 156147.
[24] ZHAO C, WANG J, CHEN X, et al. Bifunctional Bi12O17Cl2/MIL-100(Fe) composites toward photocatalytic Cr(VI) sequestration and activation of persulfate for bisphenol A degradation [J]. Science of the Total Environment, 2021, 752: 141901.
[25] YANG Z, DING J, FENG J, et al. Preparation of BiVO4/MIL‐125 (Ti) composite with enhanced visible‐light photocatalytic activity for dye degradation [J]. Applied Organometallic Chemistry, 2018, 32(4): e4285.
[26] 何云鹏, 金雪阳, 李文卓, 等. Bi2WO6/UiO-66复合材料的制备及其光催化性能[J]. 无机化学学报, 2019, 35(6): 996-1004.
HE Y P, JIN X Y, LI W Z, et al. Synthesis and photocatalytic properties of Bi2WO6/UiO-66 composite [J]. Chinese Journal of Inorganic Chemistry, 2019, 35(6): 996-1004.
[27] 李梦佳, 妥小军, 李小妹, 等. BiVO4/MIL-100(Fe)复合材料光催化降解结晶紫[J]. 精细化工, 2020, 37(1): 33-38.
LI J M, TUO X J, LI X M, et al. Photocatalytic degradation of crystal violet using BiVO4/MIL-100(Fe) composites [J]. Fine Chemicals, 2020, 37(1): 33-38.
[28] KHASEVANI S G, GHOLAMI M R. Evaluation of the reaction mechanism for photocatalytic degradation of organic pollutants with MIL-88A/BiOI structure under isible light irradiation [J]. Research on Chemical Intermediates, 2019, 45(3): 1341-1356.
[29] ASKARI N, BEHESHTI M, MOWLA D, et al. Fabrication of CuWO4/Bi2S3/ZIF-67 MOF: a novel double Z-scheme ternary heterostructure for boosting visible-light photodegradation of antibiotics [J]. Chemosphere, 2020, 251: 126453.
[30] TANG L, LV Z Q, XUE Y C, et al. MIL-53 (Fe) incorporated in the lamellar BiOBr: Promoting the visible-light catalytic capability on the degradation of rhodamine B and carbamazepine [J]. Chemical Engineering Journal, 2019, 374: 975-982.
[31] HU Q, DI J, WANG B, et al. In-situ preparation of NH2-MIL-125(Ti)/BiOCl composite with accelerating charge carriers for boosting visible light photocatalytic activity [J]. Applied Surface Science, 2019, 466: 525-534.
[32] LIANG Q, CUI S, JIN J, et al. Fabrication of BiOI@UIO-66(NH2)@g-C3N4 ternary Z-scheme heterojunction with enhanced visible-light photocatalytic activity [J]. Applied Surface Science, 2018, 456: 899-907.
[33] 綦毓文, 魏砾宏, 石冬妮, 等. UiO-66/BiVO4复合光催化剂的制备及其对四环素的光解[J]. 中国环境科学, 2021, 41(3): 1162-1171.
QI Y W, WEI L H, SHI D N, et al. Preparation of UiO-66/BiVO4 composite photocatalyst and its photodegradation of tetracycline [J]. China Environmental Science, 2021, 41(3): 1162-1171.
[34] ZHAO C, WANG Z, LI X, et al. Facile fabrication of BUC-21/Bi24O31Br10 composites for enhanced photocatalytic Cr(VI) reduction under white light [J]. Chemical Engineering Journal, 2020, 389: 123431.
[35] ZHANG S, DU M, KUANG J, et al. Surface-defect-rich mesoporous NH2-MIL-125 (Ti)@Bi2MoO6 core-shell heterojunction with improved charge separation and enhanced visible-light-driven photocatalytic performance [J]. Journal of Colloid and Interface Science, 2019, 554: 324-334.
[36] HAN Q, DONG Y, XU C, et al. Immobilization of Metal-Organic Framework MIL-100(Fe) on the Surface of BiVO4: a new platform for enhanced visible-light-driven water oxidation [J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10410-10419.
[37] LIU J X, LI R, ZU X, et al. Photocatalytic conversion of nitrogen to ammonia with water on triphase interfaces of hydrophilic-hydrophobic composite Bi4O5Br2/ZIF-8 [J]. Chemical Engineering Journal, 2019, 371: 796-803.
[38] LOPEZ Y C, VILTRES H, GUPTA N K, et al. Transition metal-based metal-organic frameworks for environmental applications: a review [J]. Environmental Chemistry Letters, 2021: 1-40.
[39] TARKWA J B, OTURAN N, ACAYANKA E, et al. Photo-Fenton oxidation of Orange G azo dye: process optimization and mineralization mechanism [J]. Environmental Chemistry Letters, 2019, 17(1): 473-479.
[40] 董振, 刘亮, 郝艳, 等. 偶氮染料废水处理技术的研究进展[J]. 水处理技术, 2017, 43(4): 6-10.
DONG Z, LIU L, HAO Y, et al. Research progress on the treatment of azo dye containing wastewater [J]. Technology of Water Treatment, 2017, 43(4): 6-10.
[41] YANG H M, LIU X, SONG X L, et al. In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(12): 3987-3994.
[42] MUGUNTHAN E, SAIDUTTA M B, JAGADEESHBABU P E. Visible light assisted photocatalytic degradation of diclofenac using TiO2-WO3 mixed oxide catalysts [J]. Environmental Nanotechnology, Monitoring & Management, 2018, 10: 322-330.
[43] LI G, NIE X, CHEN J, et al. Enhanced simultaneous PEC eradication of bacteria and antibiotics by facilely fabricated high-activity facets TiO2 mounted onto TiO2 nanotubular photoanode [J]. Water Research, 2016, 101: 597-605.
[44] KARKMAN A, PARNANEN K, LARSSON D G J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments [J]. Nature Communications, 2019, 10(1): 80.
[45] BANASCHIK R, LUKES P, JABLONOWSKI H, et al. Potential of pulsed corona discharges generated in water for the degradation of persistent pharmaceutical residues [J]. Water Research, 2015, 84: 127-35.
[46] 王雪平, 朱惠斌. 制药工业废水中14种沙星类抗生素的液相色谱分析法[J]. 工业水处理, 2019, 39(7): 89-93.
WANG X P, ZHU H B. Liquid chromatographic analysis of 14 kinds of afloxacin antibiotics in pharmaceutical industrial wastewater [J]. Industrial Water Treatment, 2019, 39(7): 89-93.
[47] WANG C C, DU X D, LI J, et al. Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review [J]. Applied Catalysis B:Environmental, 2016, 193: 198-216.
[48] 王雪瑾, 朱霞萍, 蓝路梅. 镁铝层状超分子化合物去除废水中的六价铬[J]. 应用化学, 2017, 34(1): 98-104.
WANG X J, ZHU X P, LAN L M. Efficient removal of Cr(Vl) in wastewater by Mg/Al layered superamolecular compounds [J]. Chinese Journal of Applied Chemistry, 2017, 34(1): 98-104.
[49] HAO X, JIN Z, YANG H, et al. Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution [J]. Applied Catalysis B:Environmental, 2017, 210: 45-56.
[50] BLAKEMORE J D, CRABTREE R H, BRUDVIG G W. Molecular catalysts for water oxidation [J]. Chemical Reviews, 2015, 115(23): 12974-3005.
[51] 李跃军, 曹铁平, 赵艳辉, 等. Bi@Bi2Sn2O7/TiO2等离子体复合纤维的制备及增强的光催化产氢活性[J]. 无机化学学报, 2019, 35(8): 1371-1378.
JI Y J, CAO T P, ZHAO Y H, et al. Preparation of Bi@Bi2Sn2O7/TiO2 plasmonic composite fibers with enhanced photocatalytic hydrogen generation activity [J]. Chinese Journal of Inorganic Chemistry, 2019, 35(8): 1371-1378.
[52] OSHIKIRI T, UENO K, MISAWA H. Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation [J]. Angewandte Chemie, 2014, 126(37): 9960-9963.
[53] WANG L, XIA M, WANG H, et al. Greening ammonia toward the solar ammonia refinery [J]. Joule, 2018, 2(6): 1055-1074.
[54] HIRAKAWA H, HASHIMOTO M, SHIRAISHI Y, et al. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide [J]. Journal of the American Chemical Society, 2017, 139(31): 10929-10936.
[55] VAN DER HAM C J M, KOPER M T M, HETTERSCHEID D G H. Challenges in reduction of dinitrogen by proton and electron transfer [J]. Chemical Society Reviews, 2014, 43(15): 5183-5191.
[1] Hu Lu-guo, Hu Zheng-fa, Xiao Yang, Wang Yin-hai, Zhao Hui. A Study of the Modification of Nano-CuO Photocatalyst by Ethanol Quenching [J]. Journal of Guangdong University of Technology, 2020, 37(04): 84-90.
[2] FU Li-Peng, ZHANG Guo-Qing, YANG Cheng-Zhao. Degradation of Reactive Black Dye GR in Engineering Photocatalytic Reactors Coated with TiC2 [J]. Journal of Guangdong University of Technology, 2010, 27(1): 28-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!