Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (04): 107-112.doi: 10.12052/gdutxb.210117
Previous Articles Next Articles
Long Hui1, Wei Zi-qiao1, Luo Si-yao2, Dong Hua-feng1, Chen Chuan-sheng2
CLC Number:
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669. [2] GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-191. [3] MAS-BALLESTÉ R, GÓMEZ-NAVARRO C, GÓMEZ-HERRERO J, et al. 2D materials: to graphene and beyond [J]. Nanoscale, 2011, 3(1): 20-30. [4] JOEL D C, MARINI A, JAVIER GARCÍA DE ABAJO F. Plasmon-assisted high-harmonic generation in graphene[J]. Nature Communications, 2017, 8(1): 14380. [5] XIA F N, WANG H, JIA Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J]. Nature Communications, 2014, 5(1): 4458. [6] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology, 2012, 7(11): 699-712. [7] TORRES-TORRES C, PEREA-LÓPEZ N, ELÍAS A L, et al. Third order nonlinear optical response exhibited by mono- and few-layers of WS2 [J]. 2D Materials, 2016, 3(2): 021005. [8] WANG Z W, ZHAO R W, HE J L, et al. Multi-layered black phosphorus as saturable absorber for pulsed Cr: ZnSe laser at 2.4 μm [J]. Optics Express, 2016, 24(2): 1598-1603. [9] BONACCORSO F, COLOMBO L, YU G H, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J]. Science, 2015, 347(6271): 1246501. [10] CHEN Y, TAN C L, ZHANG H, et al. Two-dimensional graphene analogues for biomedical Applications [J]. The Royal Society of Chemistry, 2015, 44(9): 2681-2701. [11] CHENG L, LIU J J, GU X, et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy [J]. Advanced Materials, 2014, 26(12): 1886-1893. [12] CHEN Y, YE D L, WU M Y, et al. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer [J]. Advanced Materials, 2014, 26(41): 7019-7026. [13] DI J, XIONG J, LI H M, et al. Ultrathin 2D photocatalysts: electronic-structure tailoring, hybridization, and applications [J]. Advanced Materials, 2018, 30(1): 1704548. [14] LONG H, LIU S X, WEN Q, et al. In2Se3 nanosheets with broadband saturable absorption used for near-infrared femtosecond laser mode locking [J]. Nanotechnology, 2019, 30(46): 465704. [15] VELICKY M, TOTH P S. From two-dimensional materials to their heterostructures: an electrochemist’s perspective [J]. Applied Materials Today, 2017, 8(1): 68-103. [16] LIU X, CHEN C. Mxene enhanced the photocatalytic activity of ZnO nanorods under visible light[J]. Materials Letters, 2020, 261: 127127 [17] CHEN C S, MEI W, WANG C, et al. Synthesis of a flower-like SnO/ZnO nanostructure with high catalytic activity and stability under natural sunlight[J]. Journal of Alloys and Compounds, 2020, 826: 154122 [18] LIU X Y, LIU Q C, CHEN C S. Ultrasonic oscillation synthesized ZnS nanoparticles/layered MXene sheet with outstanding photocatalytic activity under visible light[J]. Vacuum, 2021, 183: 109834 [19] TAO X, GU Y. Crystalline-crystalline phase transformation in two-dimensional In2Se3 thin layers [J]. Nano Letters, 2013, 13(8): 3501-3505. [20] RASMUSSEN A M, TEKLEMICHAEL S T, ELHAM M, et al. Pressure-induced phase transformation of In2Se3 [J]. Applied. Physics Letters, 2013, 102(6): 062105. [21] JACOBS-GEDRIM R B, SHANMUGAM M, JAIN N, et al. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets [J]. ACS Nano, 2013, 8(1): 514-521. [22] POPOVIC S, TONEJC A, GRETA-PLENKOVIE B, et al. Revised and new crystal data for indium selenides [J]. Journal of Applied Crystallography, 1979, 12(4): 416-420. [23] RADISAVLJEVIC B, Whitwick M B, KIS A. Integrated circuits and logic operations based on single-layer MoS2 [J]. Nature Nanotechnology, 2011, 5(12): 9934-9938. [24] EDA G, FANCHINI G, HHOWALLA M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J]. Nature Nanotechnology, 2008, 3(5): 270-274. [25] QUEREDA J, BIELE R, RUBIO-BOLLINGER G, et al. Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3 [J]. Advanced Optical Materials, 2016, 4(12): 1939-1959. [26] DING W J, ZHU J B, WANG Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials [J]. Nature Communications, 2017, 8(1): 14956. [27] CHEN C S, YU W W, LIU T G, et al. Graphene oxide/WS2/Mg-doped ZnO nanocomposites for solar-light catalytic and anti-bacterial applications[J]. Solar Energy Materials & Solar Cells, 2017, 160: 43-53. |
No related articles found! |
|