Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (02): 105-119.doi: 10.12052/gdutxb.210125
Previous Articles Next Articles
Sun Xiao-long1, Zhang Yi-kang1, Yuan Jun-shen1, Cang Zhi2, Yin Ying-mei1, Liu Zhi-sheng3,4
CLC Number:
[1] 汪海年, 高俊锋, 尤占平, 等. 路用生物沥青研究进展[J]. 武汉理工大学学报, 2014, 36(7): 55-60. WANG H N, GAO J F, YOU Z P, et al. Advances in bio-binder application on road pavement [J]. Journal of Wuhan University of Technology, 2014, 36(7): 55-60. [2] 马峰, 任欣, 傅珍. 生物沥青及其路用性能研究综述[J]. 公路工程, 2015, 40(1): 63-67. MA F, REN X, FU Z. Review on bio-asphalt and its road performance [J]. Highway Engineering, 2015, 40(1): 63-67. [3] 曹雪娟, 刘攀, 唐伯明. 生物沥青研究进展综述[J]. 材料导报, 2015, 029(17): 95-100. CAO X J, LIU P, TANG B M. Review of research progress in bio-asphalt [J]. Materials Review, 2015, 029(17): 95-100. [4] ZHANG B B, MA Y, GENG W, et al. Assessment of rape straw resources for biomass energy production in China [J]. Renewable Energy Resources, 2017, 35(1): 126-134. [5] 丁湛, 岳向京, 张静, 等. 秸秆液化制备生物沥青工艺及性能研究[J]. 应用化工, 2021, 50(7): 1776-1779. DING Z, YUE X J, ZHANG J, et al. Processes and performances of bio-asphalt preparation by straw liquefaction [J]. Applied Chemical Industry, 2021, 50(7): 1776-1779. [6] 广西大学. 一种海藻油生物沥青及海藻油生物沥青混合物的制备方法: CN201810046564.7[P]. 2018-07-27. [7] MUHAMMAD Z, SABZOI N, SRINIVASAN M, et al. Sustainable asphalt rejuvenation using waste cooking oil: a comprehensive review [J]. Journal of Cleaner Production, 2021(278): 123304. [8] 何东坡, 马明洋. 改性生物沥青耐老化性能研究[J]. 公路工程, 2019, 44(1): 193-197. HE D P, MA M Y. Research on aging resistance of modified bio-asphalt [J]. Highway Engineering, 2019, 44(1): 193-197. [9] Al-SABAEEI A M, NAPIAH M B, SUTANTO M H, et al. A systematic review of bio-asphalt for flexible pavement applications: coherent taxonomy, motivations, challenges and future directions [J]. Journal of Cleaner Production, 2019, 249(23): 119357. [10] 隋倩倩, 杨忠连, 汪娟, 等. 生物质快速热解液化工艺研究进展[J]. 化学与生物工程, 2012, 29(3): 1-5. SUI Q Q, YANG Z L, WANG J, et al. Research progress of fast pyrolysis liquefaction process of biomass [J]. Chemistry & Bioengineering, 2012, 29(3): 1-5. [11] BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading [J]. Biomass & Bioenergy, 2012, 38: 68-94. [12] 凃成. 生物质制备沥青工艺研究与优化[D]. 青岛: 中国石油大学(华东), 2016. [13] SU N Y, XIAO F P, WANG J G, et al. Productions and applications of bio-asphalts—a review [J]. Construction and Building Materials, 2018, 183: 578-591. [14] LAIRD D A, BROWN R C, AMONETTE J E, et al. Review of the pyrolysis platform for coproducing bio-oil and biochar [J]. Biofuels Bioproducts & Biorefining, 2009, 3(5): 547-562. [15] 方乐, 王伟文. 生物质快速热裂解反应器的研究进展[J]. 当代化工, 2020, 49(1): 233-236. FANG L, WANG W W. Research progress of biomass fast pyrolysis reactor [J]. Contemporary Chemical Industry, 2020, 49(1): 233-236. [16] 何咏涛. 利用农林废弃物联产生物油和生物炭[D]. 杭州:浙江工业大学, 2012. [17] ERDOGDU A E, POLAT R, OZBAY G. Pyrolysis of goat manure to produce bio-oil [J]. Engineering Science and Technology, an International Journal, 2019, 22(2): 452-457. [18] MA S, ZHANG L, ZHU L, et al. Preparation of multipurpose bio-oil from rice husk by pyrolysis and fractional condensation [J]. Journal of Analytical and Applied Pyrolysis, 2018, 131: 113-119. [19] LEHTO J, OASMAA A, SOLANTAUSTA Y, et al. Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass [J]. Applied Energy, 2014, 116(C): 178-190. [20] WRIGHT M M, DAUGAARD D E, SATRIO J A, et al. Techno-economic analysis of biomass fast pyrolysis to transportation fuels [J]. Fuel, 2010, 89(1,supplement): S2-S10. [21] BRIDGWATER A V, PEACOCKE G V C. Fast pyrolysis processes for biomass [J]. Renewable & Sustainable Energy Reviews, 2000, 4(1): 1-73. [22] MILLS-BEALE J, YOU Z, FINI E, et al. Aging influence on rheology properties of petroleum-based asphalt modified with biobinder[J]. Journal of Materials in Civil Engineering, 2014, 26(2): 358-366. [23] ELHAM H F, ERIC W K, ABOLGHASEM S, et al. Chemical characterization of biobinder from swine manure: sustainable modifier for asphalt binder[J]. Journal of Materials in Civil Engineering, 2011, 23(11): 1506-1513. [24] XU Y, YOU Z P, DAI Q L. Performance evaluation of asphalt binder modified by bio-oil generated from waste wood resources[J]. International Journal of Pavement Research and Technology, 2013, 6(4): 431. [25] 许妍, 吴文彪, 丘克强. 核桃壳真空热解制备生物油[J]. 中南大学学报(自然科学版), 2013, 44(4): 1325-1331. XU Y, WU W B, QIU K Q. Vacuum pyrolysis of walnut shell for preparetion of bio-oil [J]. Journal of Central South University(Science and Technology), 2013, 44(4): 1325-1331. [26] 郑典模, 屈海宁, 孙云. 地沟油催化裂解制备生物燃油[J]. 南昌大学学报(工版), 2010, 32(3): 242-245. ZHENG D M, QU H N, SUN Y. Biofuel preparation with hogwash oil by catalytic cracking [J]. Journal of Nanchang University (Engineering & Technology), 2010, 32(3): 242-245. [27] BISWAS B, PANDEY N, BISHT Y, et al. Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk [J]. Bioresource Technology, 2017, 237: 57-63. [28] OH S Y, KIM U J, CHOI I G, et al. Solvent effects on improvement of fuel properties during hydrodeoxygenation process of bio-oil in the presence of Pt/C [J]. Energy, 2016, 113: 116-123. [29] KABIR G, DIN A T, HAMEED B H. Pyrolysis of oil palm mesocarp fiber catalyzed with steel slag-derived zeolite for bio-oil production [J]. Bioresource Technology, 2017, 249: 42-48. [30] ALVAREZ J, LOPEZ G, AMUTIO M, et al. Characterization of the bio-oil obtained by fast pyrolysis of sewage sludge in a conical spouted bed reactor [J]. Fuel Processing Technology, 2016, 149: 169-175. [31] LY H V, KIM S, CHOI J H, et al. Fast pyrolysis of saccharina japonica alga in a fixed-bed reactor for bio-oil production [J]. Energy Conversion and Management, 2016, 122: 526-534. [32] FERNANDEZ-LOPEZ M, ANASTASAKIS K, JONG W D, et al. Temperature influence on the fast pyrolysis of manure samples: char, bio-oil and gases production [J]. E3s Web of Conferences, 2017, 22: 00043. [33] ABNISA F, ARAMI-NIYA A, DAUD W, et al. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis [J]. Energy Conversion and Management, 2013, 76: 1073-1082. [34] PAENPONG C, PATTIYA A. Effect of pyrolysis and moving-bed granular filter temperatures on the yield and properties of bio-oil from fast pyrolysis of biomass [J]. Journal of Analytical and Applied Pyrolysis, 2016, 119: 40-51. [35] BRIDGWATER A V. Principles and practice of biomass fast pyrolysis processes for liquids [J]. Journal of Analytical and Applied Pyrolysis, 1999, 51(1-2): 3-22. [36] PARK J J, LEE Y W, RYU C K, et al. Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields [J]. Bioresource Technology, 2014, 155: 63-70. [37] BALAGURUMURTHY B, SRIVASTAVA, VINIT, et al. Value addition to rice straw through pyrolysis in hydrogen and nitrogen environments [J]. Bioresource Technology, 2015, 188: 273-279. [38] AKHTAR J, AMIN N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass [J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1615-1624. [39] ZHU Z, SI B, LU J, et al. Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk [J]. Bioresource Technology, 2017, 243: 9-16. [40] ARUN J, SHREEKANTH S J, SAHANA R, et al. Studies on influence of process parameters on hydrothermal catalytic liquefaction of microalgae (Chlorella vulgaris) biomass grown in wastewater [J]. Bioresource Technology, 2017, 244: 963-968. [41] ZHOU D, ZHANG L, ZHANG S, et al. Hydrothermal liquefaction of macroalgae enteromorpha prolifera to bio-oil[J]. Energy & Fuels, 2010, 24(7): 4054-4061. [42] ELLIOTT D C, BILLER P, ROSS A B, et al. Hydrothermal liquefaction of biomass: developments from batch to continuous process [J]. Bioresource Technology, 2015, 178: 147-156. [43] ANASTASAKIS K, BILLER P, MADSEN R B, et al. Continuous hydrothermal liquefaction of biomass in a novel pilot plant with heat recovery and hydraulic oscillation [J]. Energies, 2018, 11(10): 2695. [44] AKHTAR J, AMIN N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass [J]. Renewable & Sustainable Energy Reviews, 2011, 15(3): 1615-1624. [45] BARREIRO D L, PRINS W, RONSSE F, et al. Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects [J]. Biomass & Bioenergy, 2013, 53: 113-127. [46] TIAN C Y, LI B M, LIU Z D, et al. Hydrothermal liquefaction for algal biorefinery: a critical review [J]. Renewable & Sustainable Energy Reviews, 2014, 38: 933-950. [47] VALDEZ P J, DICKINSON J G, SAVAGE P E. Characterization of product fractions from hydrothermal liquefaction of nannochloropsis sp. and the influence of solvents [J]. Journal of Virology, 2011, 19(2): 518-532. [48] TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass: a review of subcritical water technologies [J]. Energy, 2011, 36(5): 2328-2342. [49] CHIARAMONTI D, PRUSSI M, BUFFI M, et al. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production [J]. Applied Energy, 2017, 185: 963-972. [50] DIMITRIADIS, ATHANASIOS, BEZERGIANNI, et al. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review [J]. Renewable & Sustainable Energy Reviews, 2017, 68: 113-125. [51] 李振霞, 陈渊召, 周建彬, 等. 玉米秸秆纤维沥青混合料路用性能及机理分析[J]. 中国公路学报, 2019, 32(2): 47-58. LI Z X, CHEN Y Z, ZHOU J B, et al. Analysis of road performance and fiber mechanism for corn stalk fiber asphalt mixture [J]. China Journal of Highway and Transport, 2019, 32(2): 47-58. [52] CHEN Z N, YI J Y, CHEN Z G, et al. Properties of asphalt binder modified by corn stalk fiber [J]. Construction and Building Materials, 2019, 212: 225-235. [53] 李巍巍. 棉秸秆纤维沥青混合料路用性能研究[D]. 西安: 长安大学, 2015. [54] VALE A C D, CASAGRANDE M D T, SOARES J B. A study of behavior of natural fiber in stone matrix asphalt mixtures using two design methods [J]. Journal of Materials in Civil Engineering, 2014, 26(3): 457-465. [55] 郎森. 秸秆复合纤维材料路用性能试验及评价研究[D]. 武汉: 武汉工业学院, 2011. [56] LIU J Y, LI Z, CHEN H X, et al. Investigation of cotton straw fibers for asphalt mixtures [J]. Journal of Materials in Civil Engineering, 2020, 32(5): 04020105. [57] 廖欢. 棉秸秆纤维沥青混合料性能研究[J]. 中国建材科技, 2017, 26(1): 27-29. LIAO H. Study on performance of cotton straw fiber asphalt mixture [J]. China Building Materials Science & Technology, 2017, 26(1): 27-29. [58] ARABANI M, TAHAMI S A. Assessment of mechanical properties of rice husk ash modified asphalt mixture [J]. Construction and Building Materials, 2017, 149: 350-358. [59] HAN Z Q, SHA A M, TONG Z, et al. Study on the optimum rice husk ash content added in asphalt binder and its modification with bio-oil [J]. Construction and Building Materials, 2017, 147: 776-789. [60] XUE Y J, WU S P, CAI J, et al. Effects of two biomass ashes on asphalt binder: dynamic shear rheological characteristic analysis [J]. Construction and Building Materials, 2014, 56: 7-15. [61] ARABANI M, ESMAAELI N. Laboratory evaluation on effect of groundnut shell ash on performance parameters of asphalt binder and mixes [J]. Road Materials and Pavement Design, 2020, 21(6): 1565-1587. [62] ABDELMAGID A A, FENG C P. Laboratory evaluation of the effects of short-term aging on high temperature performance of asphalt binder modified with crumb rubber and rice husk ash [J]. Liquid Fuels Technology, 2019, 37(13): 1557-1565. [63] MIRHOSSEINI S A, KHABIRI M M, KAMALI M H, et al. Applying surface free energy method for evaluation of moisture damage in asphalt mixtures containing date seed ash [J]. Construction and Building Materials, 2016, 125: 408-416. [64] ABDELMAGID A A, FENG C P. Evaluating the effect of rice-husk ash and crumb-rubber powder on the high-temperature performance of asphalt binder [J]. Journal of Materials in Civil Engineering, 2019, 31(12): 04019296. [65] 王楹. 生物质灰改性沥青的制备和基本性能研究[J]. 中外公路, 2018, 38(2): 309-313. WANG Y. Preparation and basic performance of biomass ash modified asphalt [J]. Journal of China & Foreign Highway, 2018, 38(2): 309-313. [66] 廖晓锋, 雷茂锦, 陈忠达, 等. 生物结合料共混沥青的路用性能试验研究[J]. 材料导报, 2014, 28(2): 144-149. LIAO X F, LEI M J, CHEN Z D, et al. Experimental research on the pavement performance of bio-binder mixing asphalt [J]. Materials Review, 2014, 28(2): 144-149. [67] DONG Z, ZHOU T, WANG H, et al. Performance comparison between different sourced bioasphalts and asphalt mixtures [J]. Journal of Materials in Civil Engineering, 2018, 30(5): 04018063. [68] ZHANG R, WANG H, JIANG X, et al. Thermal storage stability of bio-oil modified asphalt [J]. Journal of Materials in Civil Engineering, 2018, 30(4): 04018054. [69] BAO D X, YU Y Y, ZHAO Q M. Evaluation of the chemical composition and rheological properties of bio-asphalt from different biomass sources [J]. Road Materials and Pavement Design, 2020, 21(7): 1829-1843. [70] HAJIKARIMI P, ONOCHIE A, FINI E H. Characterizing mechanical response of bio-modified bitumen at sub zero temperatures [J]. Construction and Building Materials, 2020, 240: 117940. [71] LI J, ZHANG F, MUHAMMAD Y, et al. Fabrication and properties of wide temperature domain pavement seaweed modified bio-bitumen [J]. Construction and Building Materials, 2019, 227: 117079. [72] REN Y, ZHANG L, DUAN W, et al. Performance of bitumen coating sheet using biomass pyrolysis oil [J]. Journal of the Air & Waste Management Association, 2020, 70(2): 219-227. [73] JEFFRY S N A, JAYA R P, HASSAN N A, et al. Mechanical performance of asphalt mixture containing nano-charcoal coconut shell ash [J]. Construction and Building Materials, 2018, 173: 40-48. [74] 欧阳东, 陈楷. 低温焚烧稻壳灰的显微结构及其化学活性[J]. 硅酸盐学报, 2003, 31(11): 1121-1124. OUYANG D, CHEN K. Microstructure and chemical activity of rice husk ash burned at low temperature [J]. Journal of The Chinese Ceramic Society, 2003, 31(11): 1121-1124. [75] 欧阳东, 陈楷. 稻壳灰显微结构的研究[J]. 材料科学与工程学报, 2003, 21(5): 647-650. OUYANG D, CHEN K. Study on the microstructure of rice husk ash [J]. Journal of Materials Science and Engineering, 2003, 21(5): 647-650. [76] AMIRA M M S, RAJA N A R Z, YAACOB H, et al. Effect of grinding period on physical properties of modified bitumen using palm oil fuel ash (POFA) [J]. Journal of Physics Conference, 2018, 1049(1): 012004. [77] CAI J, XUE Y J, WAN L, et al. Study on basic properties and high-temperature performance of rice-husk-ash-modified-asphalt [J]. Applied Mechanics & Materials, 2013, 333-335: 1889-1894. [78] GAO J F, WANG H N, YOU Z P, et al. Rheological behavior and sensitivity of wood-derived bio-oil modified asphalt binders [J]. Applied Sciences, 2018, 8(6): 919. [79] YANG X, YOU Z P, DAI Q L, et al. Mechanical performance of asphalt mixtures modified by bio-oils derived from waste wood resources [J]. Construction and Building Materials, 2014, 51: 424-431. [80] YANG X, YOU Z P, MILLS-BEALE J. Asphalt binders blended with a high percentage of biobinders: aging mechanism using FTIR and rheology [J]. Journal of Materials in Civil Engineering, 2015, 27(4): 04014157. [81] ZHANG R, WANG H N, YOU Z P, et al. Optimization of bio-asphalt using bio-oil and distilled water [J]. Journal of Cleaner Production, 2017, 165: 281-289. [82] ZHANG R, YOU Z P, WANG H N, et al. The impact of bio-oil as rejuvenator for aged asphalt binder [J]. Construction and Building Materials, 2019, 196: 134-143. [83] EL-FADEL M, KHOURY R. Strategies for vehicle waste-oil management: a case study [J]. Resources Conservation and Recycling, 2001, 33(2): 75-91. [84] SUN Z J, YI J Y, FENG D C, et al. Preparation of bio-bitumen by bio-oil based on free radical polymerization and production process optimization [J]. Journal of Cleaner Production, 2018, 189: 21-29. [85] SUN Z J, YI J Y, CHEN Z N, et al. Chemical and rheological properties of polymer modified bitumen incorporating bio-oil derived from waste cooking oil [J]. Materials and Structures, 2019, 52(5): 106. [86] SUN D Q, LU T, XIAO F P, et al. Formulation and aging resistance of modified bio-asphalt containing high percentage of waste cooking oil residues [J]. Journal of Cleaner Production, 2017, 161: 1203-1214. [87] XIE S X, LI Q, KARKI P, et al. Lignin as renewable and superior asphalt binder modifier [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 2817-2823. [88] BATISTA K B, PADILHA R P L, CASTRO T O, et al. High-temperature, low-temperature and weathering aging performance of lignin modified asphalt binders [J]. Industrial Crops and Products, 2018, 111: 107-116. [89] ARAFAT S, KUMAR N, WASIUDDIN N M, et al. Sustainable lignin to enhance asphalt binder oxidative aging properties and mix properties [J]. Journal of Cleaner Production, 2019, 217: 456-468. [90] NORGBEY E, HUANG J Y, HIRSCH V, et al. Unravelling the efficient use of waste lignin as a bitumen modifier for sustainable roads [J]. Construction and Building Materials, 2020, 230: 116957. [91] HUO L L, YAO Z L, ZHAO L X, et al. Contribution and potential of comprehensive utilization of straw in GHG emission reduction and carbon sequestration [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 349-359. [92] KABIR S F, MOUSAVI M, FINI E H. Selective adsorption of bio-oils' molecules onto rubber surface and its effects on stability of rubberized asphalt [J]. Journal of Cleaner Production, 2020, 252: 119856. [93] 岳红波, 陈筝, 叶群山, 等. 混杂纤维沥青胶浆及其混合料性能研究[J]. 武汉理工大学学报, 2007, 029(9): 31-34. YUE H B, CHEN Z, YE Q S, et al. Research on the related properties of asphalt binders and mixtures containing hybrid fibers [J]. Journal of Wuhan University of Technology, 2007, 029(9): 31-34. [94] 陈华鑫, 张争奇, 胡长顺. 纤维沥青路用性能机理[J]. 长安大学学报(自然科学版), 2002, 22(6): 5-7. CHEN H X, ZHANG Z Q, HU C S. Interaction mechanism of asphalt with fiber in pavement [J]. Journal of Chang’an University(Natural Science Edition), 2002, 22(6): 5-7. [95] MUNIANDY R, JAFARIAHANGARI H, YUNUS R, et al. Determination of rheological properties of bio mastic asphalt [J]. American Journal of Engineering and Applied Sciences, 2008, 1(3): 204-209. [96] 张海伟, 郝培文, 梁建军, 等. 复合纤维组成优化及其混合料性能评价[J]. 北京工业大学学报, 2016, 42(2): 261-268. ZHANG H W, HAO P W, LIANG J J, et al. Mix design and performance assessment of asphalt concretes with hybrid fibers [J]. Journal of Beijing University of Technology, 2016, 42(2): 261-268. [97] 丁智勇. 纤维沥青及其混合料性能研究[D]. 西安: 长安大学, 2009. [98] CHEN H X, XU Q W, CHEN S F, et al. Evaluation and design of fiber-reinforced asphalt mixtures [J]. Materials & Design, 2009, 30(7): 2595-2603. [99] ABTAHI S M, SHEIKHZADEH M, HEJAZI S M. Fiber-reinforced asphalt-concrete—a review [J]. Construction and Building Materials, 2010, 24(6): 871-877. [100] 林贤福, 陈志春. 沥青的纤维增强改性及其改性剂的研究[J]. 公路, 1999(1): 53-55. LIN X F, CHEN Z C. Study on fiber reinforced modification of asphalt and its modifier [J]. Highway, 1999(1): 53-55. [101] KHAN R, JABBAR A, AHMAD I, et al. Reduction in environmental problems using rice-husk ash in concrete [J]. Construction and Building Materials, 2012, 30: 360-365. [102] RAZZAQ A K, YOUSIF R A, TAHY S. Characterization of hot mix asphalt modified by egg shell powder [J]. International Research Publication House, 2018, 11: 481-492. [103] MO K H, ALENGARAM U J, JUMAAT M Z, et al. Recycling of seashell waste in concrete: a review [J]. Construction and Building Materials, 2018, 162: 751-764. [104] EDALAT-BEHBAHANI A, SOLTANZADEH F, EMAM-JOMEH M, et al. Sustainable approaches for developing concrete and mortar using waste seashell [J]. European Journal of Environmental and Civil Engineering, 2021, 25(10): 1874-1893. [105] LYU S T, XIA C D, YANG Q, et al. Improvements on the high-temperature stability, rheology, and stiffness performance of asphalt binder modified with waste crayfish shell powder [J]. Journal of Cleaner Production, 2020(264): 121745. [106] 杨光, 申爱琴, 陈志国, 等. 季冻区橡胶粉与SBS复合改性沥青混合料性能及改性机理[J]. 长安大学学报(自然科学版), 2015, 35(6): 6-15. YANGH G, SHEN A Q, CHEN Z G, et al. Pavement performance and modified mechanism of rubber powder and SBS compound modified asphalt mixture in seasonal freezing region [J]. Journal of Chang'an University (Natural Science Edition), 2015, 35(6): 6-15. [107] XIANG L, WANG Z G, DU Y, et al. Preparation technology and performance analysis of crumb rubber and SBS composite modified asphalt binder [J]. Advanced Materials Research, 2011, 160: 1320-1324. [108] ZHANG F, HU C. Physical and rheological properties of crumb rubber/styrene-butadiene-styrene compound modified asphalts [J]. Polymer Composites, 2017, 38(9): 1918-1927. [109] 袁德明, 苏波, 廖克俭, 等. 废旧橡胶粉改性沥青的制备及其影响因素[J]. 合成橡胶工业, 2007(5): 382-386. YUAN D M, SU B, LIAO K J, et al. Preparation of rubber crumb modified asphalt and its influencing factors [J]. China Synthetic Rubber Industry, 2007(5): 382-386. [110] DONG R K, ZHAO M Z, XIA W, et al. Chemical and microscopic investigation of co-pyrolysis of crumb tire rubber with waste cooking oil at mild temperature [J]. Waste Management, 2018, 79: 516-525. [111] DONG R K, ZHAO M Z. Research on the pyrolysis process of crumb tire rubber in waste cooking oil [J]. Renewable Energy, 2018, 125: 557-567. [112] DONG R K, ZHAO M Z, TANG N P. Characterization of crumb tire rubber lightly pyrolyzed in waste cooking oil and the properties of its modified bitumen [J]. Construction and Building Materials, 2019, 195: 10-18. [113] RAHMAN M T, HAININ M R, BAKAR W A. Use of waste cooking oil, tire rubber powder and palm oil fuel ash in partial replacement of bitumen [J]. Construction and Building Materials, 2017, 150: 95-104. [114] LEI Y, WANG H N, FINI E H, et al. Evaluation of the effect of bio-oil on the high-temperature performance of rubber modified asphalt [J]. Construction and Building Materials, 2018, 191: 692-701. [115] YI X Y, DONG R K, TANG N P. Development of a novel binder rejuvenator composed by waste cooking oil and crumb tire rubber [J]. Construction and Building Materials, 2020, 236: 117621. [116] 包建业, 王静. 生物改性橡胶沥青流变性能研究[J]. 中外公路, 2018, 38(6): 250-253. BAO J Y, WANG J. Study on rheological properties of bio-modified rubber asphalt [J]. Journal of China & Foreign Highway, 2018, 38(6): 250-253. [117] 叶智刚, 孔宪明, 余剑英, 等. 橡胶粉改性沥青的研究[J]. 武汉理工大学学报, 2003, 25(1): 11-14. YE Z G, KONG X M, YU J Y, et al. Investigation on crumb rubber modified asphalt [J]. Journal of Wuhan University of Techology, 2003, 25(1): 11-14. [118] 崔亚楠, 邢永明, 王岚, 等. 废胶粉改性沥青改性机理[J]. 建筑材料学报, 2011, 14(5): 634-638. CUI Y N, XING Y M, WANG L, et al. Improvement mechanism of crumb rubber-modified asphalt [J]. Journal of Building Materials, 2011, 14(5): 634-638. [119] 葛正浩, 兰云利, 石美浓, 等. SBS对生物质纤维废旧塑料复合材料的影响[J]. 塑料, 2015, 44(1): 16-18. GE Z H, LAN Y L, SHI M N, et al. Influence of SBS on biomass fiber/waste plastic composite [J]. Plastics, 2015, 44(1): 16-18. [120] 杨俊, 高磊, 焦雷, 等. 生物质纤维填充聚合物复合材料的界面行为[J]. 高分子材料科学与工程, 2011, 27(9): 56-59. YANG J, GAO L, JIAO L, et al. Interface behavior of bio-fiber filled polymer composite [J]. Polymer Materials Science & Engineering, 2011, 27(9): 56-59. [121] CHEN C L, PODOLSKY J H, WILLIAMS R C, et al. Determination of the optimum polystyrene parameters using asphalt binder modified with poly(styrene-acrylated epoxidised soybean oil) through response surface modelling[EB/OL]. Road Materials & Pavement Design, 2017: 1-20(2017-11-24)[2021-08-22]. https://www.tandfonline.com/doi/full/10.1080/14680629.2017.1407354. [122] ONOCHIE A, FINI E H, YANG X, et al. Rheological characterization of nano-particle based bio-modified binder[C]∥Proceedings of TRB 2013 Annual Meeting. Washington D C: TRB, 2013: 125-131. [123] ELHAM H F, ERIC W K, ABOLGHASEM S, et al. Chemical characterization of biobinder from swine manure: sustainable modifier for asphalt binder [J]. Journal of Materials in Civil Engineering, 2011, 23(11): 1506-1513. [124] ELHAM H F, AL-QADI I L, YOU Z P, et al. Partial replacement of asphalt binder with bio-binder: characterization and modification [J]. International Journal of Pavement Engineering, 2012, 13(6): 515-522. [125] SANI A, MOHD H M R, SHARIFF K A, et al. Engineering and microscopic characteristics of natural rubber latex modified binders incorporating silane additive[EB/OL]. International Journal of Pavement Engineering, 2019: 1-10(2019-01-29)[2021-08-22]. https://www.tandfonline.com/doi/full/10.1080/10298436.2019.1573319. [126] SETYAWAN A, DJUMARI, LEGOWO S J, et al. Design and characterization of renewable bioasphalt containing damar resin, fly ash, wasted cooking oil and latex [J]. IOP Conference Series:Materials Science and Engineering, 2017, 176(1): 012027. |
[1] | Yu Jian, Chen Ze-hong, Peng Xin-wen. Application of Biomass-based Energy Storage Materials in Flexible Devices [J]. Journal of Guangdong University of Technology, 2022, 39(01): 41-49. |
[2] | Pan Ji-sheng, Deng Jia-yun, Zhang Qi-xiang, Yan Qiu-sheng. A Review of the Application of Advanced Oxidation Technology of Hydroxyl Radicals [J]. Journal of Guangdong University of Technology, 2019, 36(02): 70-77,85. |
[3] | CHEN Shi-Guang1, SUN Hong-Wei1, WANG Zhi-Hong2. Study of Effects of Typical Micronutrients Phosphorous, Iron, Manganese and Zinc on Cyanobacteria Blooms [J]. Journal of Guangdong University of Technology, 2011, 28(2): 6-11. |
|