Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (01): 41-49.doi: 10.12052/gdutxb.210138
Previous Articles Next Articles
Yu Jian, Chen Ze-hong, Peng Xin-wen
CLC Number:
[1] 张青峰, 朱钰漕, 张涣芝, 等. 生物质及其衍生材料在有机复合相变储能材料中的应用[J]. 现代化工, 2021, 41(7): 56-67. ZHANG Q F, ZHU Y C, ZHANG H Z, et al. Application of biomass and its derived materials in organic composite phase change energy storage materials [J]. Modern Chemical Industry, 2021, 41(7): 56-67. [2] 张伟业, 刘毅, 郭洪武. 木质基电化学储能器件的研究进展[J]. 材料导报, 2020, 34(23): 23001-23008. ZHANG W Y, LIU Y, GUO H W. Research progress of wood-based electrochemical energy storage devices [J]. Materials Reports, 2020, 34(23): 23001-23008. [3] SENTHIL C, LEE C W. Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices [J]. Renewable and Sustainable Energy Reviews, 2020, 137: 110464. [4] WANG J, NIE P, DING B, et al. Biomass derived carbon for energy storage devices [J]. Journal of Materials Chemistry A, 2017, 5(6): 2411-2428. [5] 赵东江, 马松艳, 田喜强, 等. 玉米秸秆生物质炭在电化学储能中的应用[J]. 绥化学院学报, 2020, 40(11): 142-147. ZHAO D J, MA S Y, TIAN X Q, et al. Application of corn straw biochar in electrochemical energy storage [J]. Journal of Suihua University, 2020, 40(11): 142-147. [6] 邓筠飞, 杜卫民, 王梦瑶, 等. 基于玉米秸秆合成的多孔生物质炭材料及其电化学储能[J]. 应用化学, 2019, 36(11): 1323-1332. DENG J F, DU W M, WANG M Y, et al. Synthesis and the electrochemical energy storage of porous biomass carbon from corn stalk [J]. Applied Chemistry, 2019, 36(11): 1323-1332. [7] ZHOU J, CHENG J, WANG B, et al. Flexible metal–gas batteries: a potential option for next-generation power accessories for wearable electronics [J]. Energy & Environmental Science, 2020, 13(7): 1933-1970. [8] GAO Y P, ZHAI Z B, HUANG K J, et al. Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors [J]. New Journal of Chemistry, 2017, 41(20): 11456-11470. [9] TAN P, CHEN B, XU H, et al. Flexible Zn–and Li–air batteries: recent advances, challenges, and future perspectives [J]. Energy & Environmental Science, 2017, 10(10): 2056-2080. [10] QIAN G, LIAO X, ZHU Y, et al. Designing flexible lithium-ion batteries by structural engineering [J]. ACS Energy Letters, 2019, 4(3): 690-701. [11] ZHAO X, WANG C, LI Z, et al. Sulfurized polyacrylonitrile for high-performance lithium sulfur batteries: advances and prospects [J]. Journal of Materials Chemistry A, 2021, 9: 19282-19297. [12] HUANG S, ZHU X, SARKAR S, et al. Challenges and opportunities for supercapacitors [J]. APL Materials, 2019, 7(10): 100901. [13] WANG X, KERR R, CHEN F, et al. Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes [J]. Advanced Materials, 2020, 32(18): 1905219. [14] 时君友. 生物质衍生炭材料的多维结构设计及其超级电容器研究进展[J]. 北华大学学报(自然科学版), 2019, 20(5): 561-571. SHI J Y. Research progress on muti-dimensional structure design and supercapacitors performance of biomass-derived carbon materials [J]. Journal of Beihua University (Natural Science), 2019, 20(5): 561-571. [15] 梁晨. 用于超级电容器电极的生物质炭及其复合材料的制备与性能研究 [D]. 长春: 吉林大学, 2019. [16] LIU Q, JING S, WANG S, et al. Flexible nanocomposites with ultrahigh specific areal capacitance and tunable properties based on a cellulose derived nanofiber-carbon sheet framework coated with polyaniline [J]. Journal of Materials Chemistry A, 2016, 4(34): 13352-13362. [17] GAO K, SHAO Z, LI J, et al. Cellulose nanofiber–graphene all solid-state flexible supercapacitors [J]. Journal of Materials Chemistry A, 2013, 1(1): 63-67. [18] CHEN R, LI X, HUANG Q, et al. Self-assembled porous biomass carbon/RGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes [J]. Chemical Engineering Journal, 2021, 412: 128755. [19] YUAN L, YAO B, HU B, et al. Polypyrrole-coated paper for flexible solid-state energy storage [J]. Energy & Environmental Science, 2013, 6(2): 470-476. [20] YAO B, YUAN L, XIAO X, et al. Based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes [J]. Nano Energy, 2013, 2(6): 1071-1078. [21] MO M, CHEN C, GAO H, et al. Wet-spinning assembly of cellulose nanofibers reinforced graphene/polypyrrole microfibers for high performance fiber-shaped supercapacitors [J]. Electrochimica Acta, 2018, 269: 11-20. [22] HAO P, ZHAO Z, TIAN J, et al. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode [J]. Nanoscale, 2014, 6(20): 12120-12129. [23] XIAO P W, MENG Q, ZHAO L, et al. Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption [J]. Materials & Design, 2017, 129: 164-172. [24] WU K, ZHANG L, YUAN Y, et al. An iron-decorated carbon aerogel for rechargeable flow and flexible Zn-air batteries [J]. Advanced Materials, 2020, 32(32): 2002292. [25] LI L, CHEN H, HE E, et al. High-energy-density magnesium-air battery based on dual-layer gel electrolyte [J]. Angewandte Chemie International Edition, 2021, 60(28): 15317-15322. [26] HU K, YU T, ZHANG Y, et al. Inhibiting surface diffusion to synthesize 3D bicontinuous nanoporous N-doped carbon for boosting oxygen reduction reaction in flexible all-solid-state Al-air batteries [J]. Advanced Functional Materials, 2021: 2103632. [27] CHI X, LI M, DI J, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery [J]. Nature, 2021, 592(7855): 551-557. [28] LIU W, SONG M S, KONG B, et al. Flexible and stretchable energy storage: recent advances and future perspectives [J]. Advanced Materials, 2017, 29(1): 1603436. [29] YE L, HONG Y, LIAO M, et al. Recent advances in flexible fiber-shaped metal-air batteries [J]. Energy Storage Materials, 2020, 28: 364-374. [30] ZHU Y H, YANG X Y, LIU T, et al. Flexible 1D batteries: recent progress and prospects [J]. Advanced Materials, 2020, 32(5): 1901961. [31] LIU Q C, LI L, XU J J, et al. Flexible and foldable Li–O2 battery based on paper-ink cathode [J]. Advanced Materials, 2015, 27(48): 8095-8101. [32] WANG Z, KANG K, WU J, et al. Comparative effects of electrospinning ways for fabricating green, sustainable, flexible, porous, nanofibrous cellulose/chitosan carbon mats as anode materials for lithium-ion batteries [J]. Journal of Materials Research and Technology, 2021, 11: 50-61. [33] TAO L, HUANG Y, ZHENG Y, et al. Porous carbon nanofiber derived from a waste biomass as anode material in lithium-ion batteries [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95: 217-226. [34] LI S, JIN B, ZHAI X, et al. Review of carbon materials for lithium-sulfur batteries [J]. Chemistry Select, 2018, 3(8): 2245-2260. [35] CHUNG S H, CHANG C H, MANTHIRAM A. A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium–sulfur batteries [J]. ACS Nano, 2016, 10(11): 10462-10470. [36] WU F, ZHAO E, GORDON D, et al. Infiltrated porous polymer sheets as free-standing flexible lithium-sulfur battery electrodes [J]. Advanced Materials, 2016, 28(30): 6365-6371. [37] TAKADA K. Progress in solid electrolytes toward realizing solid-state lithium batteries [J]. Journal of Power Sources, 2018, 394: 74-85. [38] DING B, WANG J, FAN Z, et al. Solid-state lithium–sulfur batteries: advances, challenges and perspectives [J]. Materials Today, 2020, 40: 114-131. [39] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes [J]. Nature Reviews Materials, 2017, 2(4): 1-16. [40] PENG Z, ZOU Y, XU S, et al. High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels [J]. ACS Applied Materials & interfaces, 2018, 10(26): 22190-22200. [41] HUANG Q, YANG Y, CHEN R, et al. High performance fully paper-based all-solid-state supercapacitor fabricated by a papermaking process with silver nanoparticles and reduced graphene oxide-modified pulp fibers [J]. EcoMat, 2021, 3(1): e12076. [42] ZHAO N, WU F, XING Y, et al. Flexible hydrogel electrolyte with Superior mechanical properties based on poly (vinyl alcohol) and bacterial cellulose for the solid-state zinc–air batteries [J]. ACS Applied Materials & Interfaces, 2019, 11(17): 15537-15542. [43] LIN Y, LI J, LIU K, et al. Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery [J]. Green Chemistry, 2016, 18(13): 3796-3803. [44] HUANG X, HE R, LI M, et al. Functionalized separator for next-generation batteries [J]. Materials Today, 2020, 41: 143-155. [45] SHARMA P R, VARMA A J. Functional nanoparticles obtained from cellulose: Engineering the shape and size of 6-carboxycellulose [J]. Chemical Communications, 2013, 49(78): 8818-8820. [46] SHARMA P R, VARMA A J. Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups [J]. Carbohydrate Polymers, 2014, 114: 339-343. [47] ROJAS O J, MONTERO G A, Habibi Y. Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers [J]. Journal of Applied Polymer Science, 2009, 113(2): 927-935. [48] ISLAM M A, ONG H L, HALIM K A A, et al. Biomass–derived cellulose nanofibrils membrane from rice straw as sustainable separator for high performance supercapacitor [J]. Industrial Crops and Products, 2021, 170: 113694. [49] PLATNIEKS O, GAIDUKOVS S, BARKANE A, et al. Bio-based poly (butylene succinate)/microcrystalline cellulose/nanofibrillated cellulose-based sustainable polymer composites: Thermo-mechanical and biodegradation studies [J]. Polymers, 2020, 12(7): 1472. [50] CHEN W, YU H, LEE S Y, et al. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage [J]. Chemical Society Reviews, 2018, 47(8): 2837-2872. [51] KIM J H, KIM J H, CHOI E S, et al. Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries [J]. Journal of Power Sources, 2013, 242: 533-540. [52] LIS, ZHU W, TANG Q, et al. Mini review on cellulose-based composite separators for lithium-ion batteries: recent progress and perspectives [J]. Energy & Fuels, 2021, 35(16): 12938-12947. [53] WANG Z, ZHANG J, YANG Y, et al. Flexible carbon nanofiber/polyvinylidene fluoride composite membranes as interlayers in high-performance lithium sulfur batteries [J]. Journal of Power Sources, 2016, 329: 305-313. [54] ZHU L, YOU L, ZHU P, et al. High performance lithium–sulfur batteries with a sustainable and environmentally friendly carbon aerogel modified separator [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 248-257. [55] XU Q, KONG Q, LIU Z, et al. Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator [J]. RSC Advances, 2014, 4(16): 7845-7850. |
[1] | Wan Tao, Yuan Wen-xiong, Zhao Chen, Min Yong-gang. Research Progress of Two-dimensional Materials and Conducting Polymer Composites in Flexible Supercapacitors [J]. Journal of Guangdong University of Technology, 2023, 40(02): 74-81. |
[2] | Meng Qing-xin, Lai Xu-zhi, Yan Ze, Wu Min. Progress and Prospect of Motion Control for the Flexible Manipulator Under the Influence of Actuator Faults [J]. Journal of Guangdong University of Technology, 2022, 39(05): 9-20. |
[3] | Wu Xi-hong, Ye Guo-hua, Huang Run-ye, Zhang Guo-qing, Yang Xiao-qing, Li Xin-xi. Numerical Simulation and Experimental Study of Thermal Management System Based on Tubular Phase Change Material [J]. Journal of Guangdong University of Technology, 2022, 39(03): 133-138. |
[4] | Zhang Hai-bo, Xia Hong-jian, Li De-yuan, Liu Jia-yu. A Dynamic Characteristics Analysis of 3D Flexible Rotating Beam Based on Absolute Node Coordinate Formulation [J]. Journal of Guangdong University of Technology, 2022, 39(02): 76-83. |
[5] | Sun Xiao-long, Zhang Yi-kang, Yuan Jun-shen, Cang Zhi, Yin Ying-mei, Liu Zhi-sheng. Research Status and Development Trend of Bio-asphalt [J]. Journal of Guangdong University of Technology, 2022, 39(02): 105-119. |
[6] | Luo Chao-bing, Li Hai-chao, You Ting-ting, Xu Feng. Progress on Lignin Deep Eutectic Solvent Fractionation, Functional Materials Preparation and Industrial Application [J]. Journal of Guangdong University of Technology, 2022, 39(01): 1-13. |
[7] | Ding Bing-xiao, Li Xuan, Lu Song, Zhao Ji-yu. Design and Parameter Evaluation of a Novel Type Flexible Gripper with Characteristic of Limited Output-force Protection [J]. Journal of Guangdong University of Technology, 2021, 38(05): 52-58. |
[8] | Zhang Zhao-xuan, Chen Jing-hua, Zhao Bing-yao, Chen You-peng. Locating and Sizing Planning of Battery Swapping Stations Considering Centralized Charging Station [J]. Journal of Guangdong University of Technology, 2021, 38(05): 59-67. |
[9] | Li Yue-zhu, Huang Xing-wen, Liao Song-yi, Liu Yi-dong, Min Yong-gang. Research Progress of High Nickel Ternary Cathode Material LiNi0.8Co0.1Mn0.1O2 for Lithium-ion Batteries [J]. Journal of Guangdong University of Technology, 2021, 38(05): 68-74. |
[10] | Lin Jing-xiong, Li Zhen-peng, Ye Yuan-mao. Design of Battery Management System Based on STM32 and BQ76940 [J]. Journal of Guangdong University of Technology, 2020, 37(06): 78-84. |
[11] | Zhang Jiang-yun, Zhang Guo-qing, Chen Xuan-zhuang, Zhen Zhi-cheng. An Experimental Study of Thermal Management System Based on Phase Change Materials Coupled with Low Fins for Ternary Lithium-ion Power Battery Module [J]. Journal of Guangdong University of Technology, 2020, 37(01): 15-22. |
[12] | Jiang Yan, Huang Jin, Luo Wen. Progress of Photoisomerized Energy Storage Materials of Azobenzene [J]. Journal of Guangdong University of Technology, 2019, 36(05): 71-85. |
[13] | Zeng Li-zhen, Zheng Xiong-wen. The Reductive Mechanism of Prop-1-ene-1,3-sultone as Solid Electrolyte Interphase Film-forming Additive for Lithium Ion Battery [J]. Journal of Guangdong University of Technology, 2017, 34(05): 86-90. |
[14] | Wang Zi-yuan, Zhang Guo-qing, Gao Guan-yong, Lyu You-fu. A Study of Heat Generation Behavior of 18650 Cylindrical Battery [J]. Journal of Guangdong University of Technology, 2017, 34(01): 45-49. |
[15] | Li Xinxi, Yuan Xiaojiao, Zhang Guoqing, Zhang Xinhe, Zhang Lei. Preparation and Properties of Silicon/Graphite Composites as Anode Materials for Lithium Batteries [J]. Journal of Guangdong University of Technology, 2014, 31(2): 27-31. |
|