Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (04): 109-116.doi: 10.12052/gdutxb.220051
• Comprehensive Studies • Previous Articles Next Articles
Zheng Li-ping1, Deng Xiu-qin1, Zhang Yi-qun2
CLC Number:
[1] SONG S, SUN Y, ZHANG A, et al. Enriching data imputation under similarity rule constraints[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(2): 275-287. [2] ALABDULMOHSIN I, CISSE M, GAO X, et al. Large margin classification with indefinite similarities[J]. Machine Learning, 2016, 103(2): 215-237. [3] 张巍, 张圳彬. 联合图嵌入与特征加权的无监督特征选择[J]. 广东工业大学学报, 2021, 38(5): 16-23.ZHANG W, ZHANG Z B. Joint graph embedding and feature weighting for unsupervised feature selection[J]. Journal of Guangdong University of Technology, 2021, 38(5): 16-23. [4] ZENG S, WANG X, DUAN X, et al. Kernelized mahalanobis distance for fuzzy clustering[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(10): 3103-3117. [5] AGRESTI A. An introduction to categorical data analysis[M]. New York: John Wiley & Sons, 2018. [6] HAMMING R W. Error detecting and error correcting codes[J]. Bell Labs Technical Journal, 2014, 29(2): 147-160. [7] AHMAD A, DEY L. A method to compute distance between two categorical values of same attribute in unsupervised learning for categorical data set[J]. Pattern Recognition Letters, 2007, 28(1): 110-118. [8] IENCO D, PENSA R G, MEO R. Context-based distance learning for categorical data clustering[C]//Advances in Intelligent Data Analysis VIII: 8th International Symposium on Intelligent Data Analysis. Lyon: Springer, 2009: 83-94. [9] IENCO D, PENSA R G, MEO R. From context to distance: learning dissimilarity for categorical data clustering[J]. ACM Transactions on Knowledge Discovery from Data, 2012, 6(1): 1-25. [10] JIA H, CHEUNG Y, LIU J. A new distance metric for unsupervised learning of categorical data[J]. IEEE Transactions on Neural Networks Learning Systems, 2015, 27(5): 1065-1079. [11] CHEN L, WANG S, WANG K, et al. Soft subspace clustering of categorical data with probabilistic distance[J]. Pattern Recognition, 2016, 51(3): 322-332. [12] JIAN S, CAO L, LU K, et al. Unsupervised coupled metric similarity for non-iid categorical data[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1810-1823. [13] AGRESTI A. Analysis of ordinal categorical data[M]. New York: John Wiley & Sons, 2010. [14] ZHANG Y, CHEUNG Y. An ordinal data clustering algorithm with automated distance learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI Press, 2020: 6869-6876. [15] 林强, 唐加山. 一种适用于混合型分类数据的聚类算法[J]. 计算机工程与应用, 2019, 55(1): 168-173.LIN Q, TANG J S. Clustering algorithm for mixed categorical data[J]. Computer Engineering and Applications, 2019, 55(1): 168-173. [16] ZHANG Y, CHEUNG Y M, TAN K C. A unified entropy-based distance metric for ordinal-and-nominal-attribute data clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(1): 39-52. [17] ZHANG Y, CHEUNG Y M. A new distance metric exploiting heterogeneous interattribute relationship for ordinal-and-nominal-attribute data clustering[J]. IEEE Transactions on Cybernetics, 2022, 52(2): 758-771. [18] ZHANG Y, CHEUNG Y M, ZHANG Y, et al. Learnable weighting of intra-attribute distances for categorical data clustering with nominal and ordinal attributes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(7): 3560-3576. [19] WEST D B. Introduction to graph theory[M]. Upper Saddle River: Prentice hall, 2001. [20] CHAKRABORTY M, CHOWDHURY S, CHAKRABORTY J, et al. Algorithms for generating all possible spanning trees of a simple undirected connected graph: an extensive review[J]. Complex & Intelligent Systems, 2019, 5(3): 265-281. [21] DEVRIENDT K, VAN M P. The simplex geometry of graphs[J]. Journal of Complex Networks, 2019, 7(4): 469-490. [22] CAI D, ZHANG C, HE X. Unsupervised feature selection for multi-cluster data[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 2010: 333-342. [23] SANTOS J M, EMBRECHTS M. On the use of the adjusted rand index as a metric for evaluating supervised classification[C]//Artificial Neural Networks–ICANN 2009: 19th International Conference. Cyprus: Springer, 2009: 175-184. [24] ESTÉVEZ P A, TESMER M, PEREZ C A, et al. Normalized mutual information feature selection[J]. IEEE Transactions on Neural Networks, 2009, 20(2): 189-201. [25] HUANG Z. Extensions to the k-means algorithm for clustering large data sets with categorical values[J]. Data Mining and Knowledge Discovery, 1998, 2(3): 283-304. [26] JING L, NG M K, HUANG J Z. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(8): 1026-1041. [27] JIA H, CHEUNG Y M. Subspace clustering of categorical and numerical data with an unknown number of clusters[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(8): 3308-3325. |
[1] | Wang Yan-lin, Yang Wei-dong, Liu Yang. Modeling of Grain Reserve Multi-chain Supervision System Based on Blockchain [J]. Journal of Guangdong University of Technology, 2023, 40(03): 25-31,37. |
[2] | Chen Wen-wei, Zhao Xia, Huang Jin-cai. Detour Transformation of Evolutionary Innovations [J]. Journal of Guangdong University of Technology, 2017, 34(01): 1-5. |
[3] | Zhao Jie, Li Weihua. Research on the Ambiguity of Contradiction Based on HowNet [J]. Journal of Guangdong University of Technology, 2014, 31(2): 21-26. |
|